Skip to main content
Log in

Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of Mn addition (17, 19, and 22 wt pct) on tensile and Charpy impact properties in three austenitic Fe-Mn-C-Al-based steels were investigated at room and cryogenic temperatures in relation with deformation mechanisms. Tensile strength and elongation were not varied much with Mn content at room temperature, but abruptly decreased with decreasing Mn content at 77 K (−196 °C). Charpy impact energies at 273 K (0 °C) were higher than 200 J in the three steels, but rapidly dropped to 44 J at 77 K (−196 °C) in the 17Mn steel, while they were higher than 120 J in the 19Mn and 22Mn steels. Although the cryogenic-temperature stacking fault energies (SFEs) were lower by 30 to 50 pct than the room-temperature SFEs, the SFE of the 22Mn steel was situated in the TWinning-induced plasticity regime. In the 17Mn and 19Mn steels, however, α′-martensites were formed by the TRansformation-induced plasticity mechanism because of the low SFEs. EBSD analyses along with interrupted tensile tests at cryogenic temperature showed that the austenite was sufficiently deformed in the 19Mn steel even after the formation of α′-martensite, thereby leading to the high impact energy over 120 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889-99.

    Article  Google Scholar 

  2. K.H. Kwon, J.S. Jeong, J.-K. Choi, Y.M. Koo, Y. Tomota, and N.J. Kim: Met. Mater. Int., 2012, vol. 18, pp. 751-55.

    Article  Google Scholar 

  3. J.K. Choi, S.G. Lee, Y.H. Park, I.W. Han, and J.W. Morris: Proc. 22th Int. Offshore and Polar Engineering Conf., International Society of Offshore and Polar Engineers, Greece, 2012, p. 29.

  4. J.W. Morris, S.K. Hwang, K.A. Yushchenko, V.I. Belotzerkovetz, and O.G. Kvasnevskii: Adv. Cryog. Eng., 1978, vol. 24, pp. 91-102.

    Article  Google Scholar 

  5. S. Vervynckt, P. Thibaux, and K. Verbeken: Met. Mater. Int., 2012, vol. 18, pp. 37-46.

    Article  Google Scholar 

  6. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng., 2004, vol. A387-389, pp. 158-62.

    Article  Google Scholar 

  7. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1688-704.

    Article  Google Scholar 

  8. L. Remy: Acta Metall., 1978, vol. 36, pp. 47-63.

    Google Scholar 

  9. S. Allain, O. Bouaziz, and J.P. Chateau: Scr. Mater., 2010, vol. 62, pp. 500-3.

    Article  Google Scholar 

  10. I.C. Jung and B.C. De Cooman: Acta Mater., 2013, vol. 61, pp. 6724-35.

    Article  Google Scholar 

  11. J.-E. Jin, M. Jung, C.-Y. Lee, J. Jeong, and Y.-K. Lee: Met. Mater. Int., 2012, vol. 18, pp. 419-23.

    Article  Google Scholar 

  12. M.-K. Paek, J.-M. Jang, K.-H. Do, and J.-J. Pak: Met. Mater. Int., 2013, vol. 19, pp. 1077-81.

    Article  Google Scholar 

  13. O. Bouaziz, S. Allain, C.P. Scott, P. Cugya, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141-68.

    Article  Google Scholar 

  14. Y. Tomota, M. Strum, and J.W. Morris: Metall. Trans. A, 1986, vol. 17A, pp. 537-47.

    Article  Google Scholar 

  15. I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 9925-32.

    Article  Google Scholar 

  16. S. Hong, S.Y. Shin, H.S. Kim, S. Lee, S.K. Kim, K.G. Chin, and N.J. Kim: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1870-83.

    Article  Google Scholar 

  17. K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng., 2010, vol. 527, pp. 2969-77.

    Article  Google Scholar 

  18. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.

    Article  Google Scholar 

  19. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  20. D. Broek: Engns. Fracture Mech., 1973, vol. 5, pp. 55-6.

    Article  Google Scholar 

  21. J.R. Low: Engns. Fracture Mech., 1968, vol. 1, pp. 47-8.

    Article  Google Scholar 

  22. Y. Tomota, M. Strum, and J.W. Morris: Metall. Trans. A, 1987, vol. 18A, pp. 1073-81.

    Article  Google Scholar 

  23. J. Charles and A. Berghezan: Cryogenics, 1981, vol. 21, pp. 278-80.

    Article  Google Scholar 

  24. S. Curtze and V.-T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129-41.

    Article  Google Scholar 

  25. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng., 2008, vol. A483-484, pp. 184-87.

    Article  Google Scholar 

  26. N.S. Lim, H.S. Park, S.I. Kim, and C.H. Park: Met. Mater. Int., 2012, vol. 18, pp. 647-54.

    Article  Google Scholar 

  27. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99-107.

    Article  Google Scholar 

  28. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173-86.

    Article  Google Scholar 

  29. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1223-33.

    Article  Google Scholar 

  30. P.M. Kelly: Acta Metall., 1965, vol. 13, pp. 635-46.

    Article  Google Scholar 

  31. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076-90.

    Article  Google Scholar 

  32. J.-Y. Park and Y.-S. Ahn: Korean J. Met. Mater., 2012, vol. 50, pp. 793-800.

    Google Scholar 

  33. J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359-71.

    Article  Google Scholar 

  34. B. Sundman, B. Jansson, and J.-O. Andersson: Calphad, 1985, vol. 9, pp. 153-90.

    Article  Google Scholar 

  35. TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH, KTH, Stockholm, 1999.

  36. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys. Compd., 2010, vol. 505, pp. 217-23.

    Article  Google Scholar 

  37. P. Müllner, C. Solenthaler, P.J. Uggowotzer, and M.O. Speidel: Acta Metall., 1994, vol. 42, pp. 2211-7.

    Article  Google Scholar 

  38. B. Hwang, T.-H. Lee, S.-J. Park, C.-S. Oh, and S.-J. Kim: Mater. Sci. Eng., 2011, vol. A528, pp. 7257-66.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Knowledge Economy under a Grant No. 10044574-2013-45.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted March 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Sohn, S.S., Hong, S. et al. Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications. Metall Mater Trans A 45, 5419–5430 (2014). https://doi.org/10.1007/s11661-014-2513-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2513-9

Keywords

Navigation