Skip to main content
Log in

Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot compression tests were conducted on Ti-13V-11Cr-3Al beta-Ti alloy in the temperature range of 1203 K to 1353 K (930 °C to 1080 °C) and at strain rates between 0.001 and 1 s−1 The stress–strain curves showed pronounced yield point phenomena at high strain rates and low temperatures. The yield point elongation and flow stresses at the upper and lower yield points were related to the Zener–Hollomon parameter. It was found that dynamic recovery at low strain rates and dynamic recrystallization at high strain rates were the controlling mechanisms of microstructural evolution. The results also showed that strain rate had a stronger influence on the hot deformation behavior than temperature. The microstructural observations and constitutive analysis of flow stress data supported the change in the hot deformation behavior of the studied alloy varies with strain rate. For various applied strain rates, the activation energy for hot deformation was calculated in range of 199.5 to 361.7 kJ/mol. At low strain rates (0.001 and 0.01 s−1), the value of activation energy was very close to the activation energy for the diffusion of V, Cr, and Al in beta titanium. The higher value of activation energy for deformation at high strain rates (0.1 and 1 s−1) was attributed to the accumulation of dislocations and the tendency to initiate dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward and S. Fox: J. Alloys Comp., 2008, vol. 457, pp. 296-309.

    Article  Google Scholar 

  2. N. Clément, A. Lenian and P.J. Jacques: JOM, 2007, vol. 59, pp. 50-3.

    Article  Google Scholar 

  3. M. Ikeda, S.-Y. Komatsu, I. Sowa and M. Niinom: Met. Mat. Trans., 2002, vol. 33A, pp. 487-93.

    Article  Google Scholar 

  4. S.M. Abbasi and A. Momeni: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1728-34.

    Article  Google Scholar 

  5. O.M. Ivasishain, P.E. Markovsky, Yu.V. Matviychuk and S.L. Semiatin: Met. Mat. Trans., 2003, vol. 34A, pp. 147-58.

    Article  Google Scholar 

  6. W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong, E. Patoor and P. Laheurte: J. Mech. Behav. Biomed. Mater., 2013, vol. 18, pp. 47-56.

    Article  Google Scholar 

  7. V.V. Balasubrahmanyam and Y.V.R.K. Prasad: Mater. Sci. Eng., 2002, vol. A336, pp. 150-8.

    Article  Google Scholar 

  8. A. Momeni and S.M. Abbasi: Mater. Design, 2010, vol. 31, pp. 3599-604.

    Article  Google Scholar 

  9. P.J. Mazisz and C.T. Liu, Met. Mater. Trans., 1998, vol. 29A, pp. 105-17.

    Article  Google Scholar 

  10. C. Li, X. Zhang, Z. Li and K.-C. Zhou: Mater. Sci. Eng., 2013, vol. A573, pp. 75-83.

    Google Scholar 

  11. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang and J.S. Li: Mater. Sci. Eng., 2013, vol. A584, pp. 121-32.

    Article  Google Scholar 

  12. [12] S. Roy and S. Suwas: Met. Mater. Trans., 2013, vol. 44A, pp. 3303-21.

    Article  Google Scholar 

  13. S.F. Semiatin,.F. Montheillet, G. Shen and J.J. Jonas: Met. Mater. Trans., 2002, vol. 33A, pp. 2719-27.

    Article  Google Scholar 

  14. L. Sahebdel, S.M. Abbasi and A. Momeni: Int. J. Mat. Res., 2011, vol. 102, pp. 1-7.

    Article  Google Scholar 

  15. L. He, A. Dehghan-Manshadi and R.J. Dippenaar: Mater. Sci. Eng., 2012, vol. 15, pp. 163-7.

    Article  Google Scholar 

  16. H. Matsumoto, L. Bin, S.-H. Lee, Y. Li, Y. Ono and A. Chiba: Met. Mater. Trans., 2013, vol. 44A, pp. 3245-60.

    Article  Google Scholar 

  17. M. Jackson, R. Dashwood, H. Flower and L. Christodoulou: Met. Mater. Trans., 2005, vol. 36A, pp. 1317-27.

    Article  Google Scholar 

  18. A.A. Babareko, O.S. Belova, V.N. Kopilov, I.N. Razuvaeva and Yu.D. Khesin: Met. Sci. Heat Treat., 1991, vol. 33, pp. 703-7.

    Article  Google Scholar 

  19. A.H. Sheikhali, M. Morakkabati, S.M. Abbasi, and A. Rezaei: Int. J. Mater. Res., 2013, in press.

  20. P. Griffiths and C. Hammond: Acta Metal., 1972, vol. 20, pp. 935-46.

    Article  Google Scholar 

  21. I. Philippart and H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 196-200.

    Article  Google Scholar 

  22. X. Wang, H. Hamasaki, M. Yamamura, R. Yamauchi, T. Maeda, Y. Shirai and F. Yoshida: Mater. Trans., 2009, vol. 50, pp. 1576-8.

    Article  Google Scholar 

  23. H.-J. Christ, M. Decker and S. Zeitler: Met. Mater. Trans., 2000, vol. 31A, pp. 1507-20.

    Article  Google Scholar 

  24. R. Srinivasan: Scripta metall., 1992, vol. 27, pp. 925-30.

    Article  Google Scholar 

  25. A.P.L. Turner: Ph.D. Thesis, California Institute of Technology, 1969.

  26. G.E. Dieter: Mechanical metallurgy, McGraw-Hill, New York, 1988.

    Google Scholar 

  27. Technical Documentary Report No. ASD-TDR-62-561: Diffusion in Titanium and Titanium Alloys, Armed Services Technical Information Agency, October 1962.

  28. S.Y. Lee, O. Taguchi and Y. Iijima: Mater. Trans., 2010, vol. 10, pp. 1809-13.

    Article  Google Scholar 

  29. H. Araki, T. Yamane, T. Nakatuka and Y. Minamino: Zeitschrift für Metallkunde, 2006, vol. 97, pp. 22-7.

    Google Scholar 

  30. A. Momeni, K. Dehghani and M.C. Poletti: Mater. Chem. Phys., 2003, vol. 139, pp. 747-55.

    Article  Google Scholar 

  31. C. Ouchi, T. Okita: Trans. ISIJ, 1983, vol. 23, pp. 128-36.

    Article  Google Scholar 

  32. F.J. Humphreys, M. Hatherly: Recrystallization and related annealing phenomena, 4nd ed New York, Elsevier pub., 2004.

    Google Scholar 

  33. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, H. Monajatizadeh: Met. Mater. Int., 2013, vol. 19, pp. 11-7.

    Article  Google Scholar 

  34. X. Yang, H. Miura, T. Sakai, Continuous dynamic recrystallization in a superplastic 7075 Aluminum alloy, Mater. Trans., 43 (2002) 2400-7.

    Article  Google Scholar 

  35. S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger and P. Poelt: Mater. Sci. Eng., 2011, vol. A528, pp. 3754–60.

    Article  Google Scholar 

  36. Y. Wang, W.Z. Shao, L. Zhen, L. Yang and X.M. Zhang: Mater. Sci. Eng., 2008, vol. A497, pp. 479–86.

    Article  Google Scholar 

  37. Y.C. Lin and X.M. Chen: Mater. Design, 2011, vol. 32, 1733-59.

    Article  Google Scholar 

  38. A. Momeni and K. Dehghani: Met. Mater. Trans., 2011, Vol. 42A, pp. 1925-32.

    Article  Google Scholar 

  39. A. Momeni, K. Dehghani, G.R. Ebrahimi and Sh. Kazemi, Met. Mater. Trans., 2013, vol. 44A, 5567-76.

    Article  Google Scholar 

  40. X. Zhang, Y. Zhao, W. Zeng: Mater. Sci. Eng., 2010, vol. A527, pp. 3489-92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Momeni.

Additional information

Manuscript submitted December 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S.M., Morakkabati, M., Sheikhali, A.H. et al. Hot Deformation Behavior of Beta Titanium Ti-13V-11Cr-3Al Alloy. Metall Mater Trans A 45, 5201–5211 (2014). https://doi.org/10.1007/s11661-014-2464-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2464-1

Keywords

Navigation