Skip to main content
Log in

Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. ‘M’ refers to metal atoms.

  2. We henceforth use the subscript r to identify transformation temperatures for bainite (B Sr) and martensite (M Sr) as well, recorded during continuous cooling. These will differ from the fundamental B S and M S temperatures either because undercooling occurs due to kinetic reasons or because the chemical composition of austenite is altered by prior transformation into other phases.

References

  1. S. J. Zinkle, G. S. Was, Acta Materialia 61 (2013) 735–758.

    Article  Google Scholar 

  2. S. Xu, X. Q. Wu, E. H. Han, W. Ke, Journal of Materials Science 44 (2009) 2882–2889.

    Article  Google Scholar 

  3. S. Lee, S. Kim, B. Hwang, B.S. Lee, C.G. Lee, Acta Mater. 50, 5755–4762 (2002).

    Article  Google Scholar 

  4. B. S. Lee, J. H. Hong, W. Yang, M. Y. Huh, S. H. Chi, International Journal of Pressure Vessels and Piping 77 (2000) 599–604.

    Article  Google Scholar 

  5. X. Wu, I. Kim, Materials Science and Engineering A 348 (2003) 309–318.

    Article  Google Scholar 

  6. S. Chi, G. Lucas: Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology, 1999, pp. 223–30.

  7. B.S. Lee, M.C. Kim, J.H. Yoon, J. H. Hong, Int. J. Press. Vessels Pip. 87, 74–80 (2010).

    Article  Google Scholar 

  8. Y.S.Ahn,H.D.Kim,T.S.Byun,Y.J.Oh,G.M.Kim,J.H.Hong, Nuclear Engineering and Design 194 (1999) 161–177.

    Article  Google Scholar 

  9. T. S. Byun, J. H. Hong, F. M. Haggag, K. Farrell, E. H. Lee, Interna- tional Journal of Pressure Vessels and Piping 74 (1997) 231–238.

    Article  Google Scholar 

  10. M. S. Garcia-Redondo, M. L. Castano-Marin, D. Gomez-Briceno, Re- vista de Metalurgia Madrid 36 (2000) 88–99.

    Article  Google Scholar 

  11. Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong, H. C. Lee, Journal of Nuclear Materials 297 (2001) 138–148.

    Article  Google Scholar 

  12. K. D. Haverkamp, K. Forch, K. H. Piehl, W. Witte, Nuclear Engineering and Design 81 (1984) 207–217.

    Article  Google Scholar 

  13. K. Suzuki, I. Kurihara, Sasaki, Y. Koyoma, Y. Tanakaca, Nuclear Engineering and Design 206 (2001) 261–278.

    Article  Google Scholar 

  14. S. Kim, Y. Im, S. Lee, H. Lee, Y.J. Oh, J.H. Hong, Metall. Mater. Trans. A 32A (2001) 903–911.

    Article  Google Scholar 

  15. K. Lee, M. C. Kim, W. J. Yang, B. S. Lee, Materials Science and Engineering A 565 (2013) 158–164.

    Article  Google Scholar 

  16. L. Hao, M. Sun, D. Li, Advanced Materials Research 311–313 (2011) 974–977.

    Article  Google Scholar 

  17. J. T. Kim, H. K. Kwon, H. S. Chang, Y. W. Park, Materials Engineering and Design 174 (1997) 51–58.

    Google Scholar 

  18. D. Cogswell, D. Swan, R. Mitchell,, S. Garwood, Machinery and Manufacturing Digest (welding) 1 (2011) 28.

    Google Scholar 

  19. H.-S. Yang, H. K. D. H. Bhadeshia, Materials Science and Technology 23 (2007) 556–560.

    Article  Google Scholar 

  20. H. Pous-Romero, I. Lonardelli, D. Cogswell, H. K. D. H. Bhadeshia, Materials Science & Engineering A 567 (2013) 72–79.

    Article  Google Scholar 

  21. M. Peet and H.K.D.H. Bhadeshia: Software for Transformations in Steels, 1982, http://www.msm.cam.ac.uk/map/steel/programs/mucg83.html, Accessed 01 Dec 2013.

  22. NPL, MTDATA, Software, National Physical Laboratory, Teddington, U.K., 2006.

  23. J. O. Andersson, T. Helande, L. Hoglund, P. Shi, B. Sundman, CAL- PHAD 26 (2002) 273–312.

    Article  Google Scholar 

  24. S.J. Jones and H.K.D.H. Bhadeshia: Displacive Phase Transformations and Their Applications in Materials Engineering, The Minerals, Metals & Materials Society, Materials Park, OH, 1998, pp. 419–26.

  25. H. K. D. H. Bhadeshia, L.-E. Svensson, B. Gretoft, Acta Metallurgica 33 (1985) 1271–1283.

    Article  Google Scholar 

  26. S. Kim, S. Y. Kang, S. J. Oh, S. Kwon, S. Lee, J. H. Kim, J. H. Hong, Metallurgical and Materials Transactions A 31 (2000) 1107–1119.

    Article  Google Scholar 

  27. X. Q. Wu, Y. Katada, Journal of Materials Science 40 (2005) 1953–1958.

    Article  Google Scholar 

  28. S. Jones, H. K. D. H. Bhadeshia, Acta Materialia 45 (1997) 2911–2920.

    Article  Google Scholar 

  29. Y.R. Im, B.J. Lee, Y.J. Oh, J.H. Hong, H.C. Lee, J. Nucl. Mater. 324 (2004) 33–40.

    Article  Google Scholar 

  30. R. W. K. Honeycombe, Metal Science 14 (1980) 201–214.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rolls-Royce plc for sponsoring this work and in particular to Dan Cogswell for his support. Discussions with staff at Sheffield Forgemasters, particularly with Jesus Talamantes-Silva, are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Pous-Romero.

Additional information

Manuscript submitted December 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pous-Romero, H., Bhadeshia, H.K.D.H. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels. Metall Mater Trans A 45, 4897–4906 (2014). https://doi.org/10.1007/s11661-014-2433-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2433-8

Keywords

Navigation