Skip to main content
Log in

Structural, Electrical, and Optical Behavior of Strontium Bismuth Titanate Ceramic

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this report, we present the structural, electrical, and optical study of layer-structured SrBi4Ti4O15 (SBT) ceramic prepared by solid-state reaction route. The X-ray diffraction and Rietveld refinement studies show a single-phase orthorhombic structure with space group A21am. The scanning electron micrograph shows plate-like grains. The various Raman peaks originated due to the TiO6 octahedron confirm the orthorhombic structure. The temperature-dependent dielectric study shows a normal ferroelectric phase transition with a transition temperature at 813 K (540 °C). Impedance studies show a non-Debye-type relaxation and relaxation frequency shift to higher side with increase in temperature. The Nyquist plot shows overlapping semicircles which results the existence of both for grain and grain boundary effect in SBT ceramic. The frequency-dependent AC conductivity at different temperatures indicates that the conduction process is thermally activated and the spectra follow the universal power law. The variation of DC conductivity confirms that the SBT ceramic exhibits negative temperature coefficient of resistance behavior. The Ferroelectric behavior is studied by hysteresis loop. The optical band gap is found to be 2.93 eV from the UV–Visible spectroscopy study. The room-temperature photoluminescence study shows a strong red emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.F. Scott: Ferroelectr. Rev., 1998, vol. 1, pp. 1-129.

    Article  Google Scholar 

  2. J.F Scott and C.A. Araujo: Ferroelectr. Mem. Sci., 1989, vol. 246, pp. 1400–05.

    Google Scholar 

  3. B. Jaffe, W.R. Cook, and H. Jaffe: Piezoelectric Ceramics, Academic Press, New York, 1971, p. 146.

    Google Scholar 

  4. F. Levassort, P. Tran-Huu-Hue, E. Ringaard, and M. Lethiecq: J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1361–65.

    Article  Google Scholar 

  5. J. Chen, M. P Harmer, and D. M Smyth: J. Appl. Phys., 1994, vol.76, pp. 5394–5398.

    Article  Google Scholar 

  6. J. Lee, L. Johnson, A. Safari, R. Ramesh, T. Sands, and V.G. Keramidas: Appl. Phys. Lett., 1993, vol. 63, pp. 27–29.

    Article  Google Scholar 

  7. Q. Jiang, E. C Subbarao, and, L.E. Cross: Acta Metall., 1994, vol. 42, pp. 3687–94.

    Article  Google Scholar 

  8. G. S White, A. S Raynes, M. D Vaudin and S. W. Freiman: J. Am. Ceram. Soc., 1994, vol. 77, pp. 2603–2608.

    Article  Google Scholar 

  9. A.V. Turik, O.V. Pugachev, V.V. Volgin and M.S. Novikov: J. Eur. Ceram. Soc., 1999, vol.19, pp. 1175-77.

    Article  Google Scholar 

  10. L. Ramajo, M.S. Castro and M.M. Reboredo: Appl. Sci. Manuf., 2007, vol. 38, pp. 1852-59.

    Article  Google Scholar 

  11. G.C.C. da Costa, A.Z. Simões, A. Ries, C.R. Foschini, M.A. Zaghete, and J.A. Varela: Mater. Lett., 2004, vol. 58, pp. 1709–14.

    Article  Google Scholar 

  12. C.A. Paz de Araujo, J.D. Cuchiaro, M.C. Scott, and L.D. McMillan: Int. Pat. Appl., 1993, vol. 93, 12542.

  13. Y. Shimakawa, Y. Kubo and Y. Nakagawa: Phys. Rev. B, 2000, vol. 61, pp. 6559–6564.

    Article  Google Scholar 

  14. G. N. Subbanna, T. N. G. Row, and C. N. R. Rao: J. Solid State Chem., 1990, vol. 86, pp. 206–11.

    Article  Google Scholar 

  15. A. Rae, J. Thompson, R. Withers, and A. Willis: Acta Cryst. B, 1990, vol. 46, pp. 474–87.

    Article  Google Scholar 

  16. S.K. Kim, M. Miyayama, and H. Yanagida: Mater. Res. Bull., 1996, vol. 31(1), pp. 121–31.

    Article  Google Scholar 

  17. A.Z. Simoes and C.S. Riccardi: Adv. Mater. Sci. Eng., 2009, vol. 2009, pp. 1155–62.

    Google Scholar 

  18. M. Noda, T. Nakaiso, K. Takarabe, K. Kodamav, and M. Okuyama: J. Cryst., 2002, vol. 237–239, pp. 237–39.

    Google Scholar 

  19. M. Raghavender, G.S. Kumar, and G. Prasad: Appl. Phys., 2006, vol. 44, pp. 4–51.

    Google Scholar 

  20. C.-H. Lu and C. Wu: J. Eur. Ceram. Soc., 2002, vol. 22, pp. 707–14.

    Article  Google Scholar 

  21. P. Balaz, E. Godocikova, L. Krilova, P. Lobotka and E. Gock: Mater. Sci. Eng., 2004, vol. 386, pp. 442-46.

    Article  Google Scholar 

  22. S.K. Rout, A. Hussain, J.S. Lee, I.W. Kim, and S.I. Woo: J. Alloys Compd., 2009, vol. 477, pp. 706–11.

    Article  Google Scholar 

  23. B. Mamatha, M.B. Suresh, A.R. James, M. Vithal, and P. Sarah: Phys. Scr., 2011, vol. 84, p. 055704.

    Article  Google Scholar 

  24. T. Mimani and K.C. Patil: Mater. Phys. Mech., 2001, vol. 4, pp. 134–37.

    Google Scholar 

  25. R.Z. Hou and X.M. Chen: Solid State Commun., 2004, vol. 130, pp. 469–72.

    Article  Google Scholar 

  26. G. Nalini and T.N. Guru Row: Bull. Mater. Sci., 2002, vol. 25, pp. 275–81.

    Article  Google Scholar 

  27. S. Kojima, R. Imaizumi, S. Hamazaki, and M. Takashige: J. Appl. Phys., 1994, vol. 33, pp. 5559–64.

    Article  Google Scholar 

  28. S. Kojima, R. Imaizumi, S. Hamazaki, and M. Takashige: J. Mol. Struct., 1995, vol. 37, 384.

    Google Scholar 

  29. M. Osada, M. Tada, M. Kakihana, T. Watanabe and H. Funakubo: J. Appl. Phys., 2001, vol. 40, pp. 891-93.

    Article  Google Scholar 

  30. N. Sugita, E. Tokumitsu, M. Osada, and M. Kakihana: Jpn. J. Appl. Phys., 2003, vol. 42, p. 944-45.

    Article  Google Scholar 

  31. N. Sugita, M. Osada, and E. Tokumitsu: Jpn. J. Appl. Phys., 2002, vol. 41, p. 6810.

    Article  Google Scholar 

  32. P.R. Graves, G. Hua, S. Myhra, and J.G. Thompson: J. Solid State Chem., 1995, vol. 114, pp. 301–614.

    Article  Google Scholar 

  33. M. Raghavender, G.S. Kumar, and G. Prasad: Appl. Phys., 2006, vol. 44, pp. 46–51.

    Google Scholar 

  34. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi and M. Maglione: Phys. Rev. B, 1994, vol. 49, pp. 7868.

    Article  Google Scholar 

  35. A. Kyritsis, P. Pissis, and J. Grammatikakis: J. Polym. Sci. Polym. Phys. 1995, vol. 33, p. 1737-50.

    Article  Google Scholar 

  36. T.J.B. Holland, S.A.T. Redfern: Mineral. Mag., 1997, vol. 61, pp. 65–77.

    Article  Google Scholar 

  37. J.T.C. Irvine, D.C. Sinclair and A.R. West: Adv. Mater., 1990, vol. 2, pp. 132-38.

    Article  Google Scholar 

  38. J. Plocharski and W. Wieczoreck: Solid State Ion., 1988, vol. 28-30, pp. 979-82.

    Article  Google Scholar 

  39. P.B. Macedo, C.T. Moynihan, and R. Bose: Phys. Chem. Glasses, 1972, vol. 13, p. 171-79.

    Google Scholar 

  40. K. Funke: Solid State Chem., 1993, vol. 22, pp. 111–95.

    Article  Google Scholar 

  41. A.K. Jonscher: Nature (Lond.), 1977, vol. 267, pp. 673–79.

    Article  Google Scholar 

  42. W. Chen, W. Zhu, O.K. Tan and X.F. Chen: J. Appl. Phys.: 2010, vol. 108, p. 034101.

    Article  Google Scholar 

  43. A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, and R. Valenzuela: Appl. Phys. Lett., 1998, vol. 73, p. 2039-41.

    Article  Google Scholar 

  44. A.A.A. Youssef and Z. Naturforsch: Appl. Phys. Sci., 2002, vol. 57, pp. 5–6.

    Google Scholar 

  45. C. Voisard, D. Damjanovic, and N. Setter: J. Eur. Ceram. Soc., 1999, vol. 19, pp. 6–7.

    Article  Google Scholar 

  46. A.L. Kholkin, M. Avdeev, M.E.V. Costa, J.L. Baptista, and S.N. Dorogovtsev: Appl. Phys. Lett., 2001, vol. 79, pp. 662–65.

    Article  Google Scholar 

  47. J. Zhu, X.B. Chen, J.H. He, and J.C. Shen: Phys. Lett. A, 2007, vol. 362, pp. 471–75.

    Article  Google Scholar 

  48. A. Z. Simões, C. S. Riccardi, L. S. Cavalcante, E. Longo, J. A. Varela, and B. Mizaikoff: Mater Res. Bull., 2007, vol. 43, pp. 158-67.

    Article  Google Scholar 

  49. M. E. Fuentes, A. Mehta, L. Lascano, H. Camacho, R. Chianelli, J. F. Fernandez, and L. Fuentes, Ferroelectrics, 2002, vol. 269, pp. 159-64.

    Article  Google Scholar 

  50. B.J. Kennedy, Y. Kubotab, B.A. Hunter, Ismunandar, and K. Kato: Solid State Commun., 2003,vol.126,pp. 653-658 .

    Article  Google Scholar 

  51. E. Venkata Ramana, S.V. Suryanarayana and T. BhimaSankaram : Mater. Res. Bull.,2006,vol.41,pp. 1077-88.

    Article  Google Scholar 

  52. R. Machado, M.G. Stachiotti, R.L. Migoni, and A. Huanosta Tera: Phys. Rev. B, 2004, vol. 70, pp. 214112-1–118.

  53. F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. de Lazaro, R. Magnani, P.S. Pizani, T.M. Boschi and F. Lanciotti: J. Lumin., 2003, vol. 104, pp. 175-85.

    Article  Google Scholar 

  54. M. Aguilar, C. Gonzalo and G. Godefroy: Ferroelectrics, 1980, vol.25,pp.467-470.

    Article  Google Scholar 

  55. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H.Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa and M. Takano: Nat. Mater. 2005, vol.4, pp. 816-19.

    Article  Google Scholar 

  56. J. Meng, Y. Huang, W. Zhang, Z. Du, Z. Zhu and G. Zou: Phys Lett. A, 1995, vol. 25, pp. 72-75.

    Article  Google Scholar 

  57. P.S. Pizani, E.R. Leite, F.M. Pontes, E.C. Paris, J.H. Rangel, E.J.H. Lee, E. Longo, P. Delega and J.A. Varela: Appl. Phys. Lett., 2000, vol.77, pp. 824-30.

    Article  Google Scholar 

  58. E.C. Paris, M.F.C. Gurgel, T.M. Boschi, M.R. Joya, P.S. Pizani, A.G. Souza, E.R. Leite, J.A. Varela and E. Longo, J. Alloys Compd., 2008, vol. 462, 157.

    Article  Google Scholar 

  59. M.F.C. Gurgel, J.W.M. Espinosa, A.B. Campos, I.L.V. Rosa, M.R. Joya, A.G. Souza, M.A. Zaghete, P.S. Pizani, E.R. Leite, J.A. Varela and E. Longo, J. Lumin., 2007, vol.126, pp. 771-76.

    Article  Google Scholar 

  60. W.H. Zhang,and J.X.Zhang, J. Lumin., 2011, vol.131, pp. 2307–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simanchalo Panigrahi.

Additional information

Manuscript submitted July 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, P., Badapanda, T., Pattanayak, R. et al. Structural, Electrical, and Optical Behavior of Strontium Bismuth Titanate Ceramic. Metall Mater Trans A 45, 2132–2141 (2014). https://doi.org/10.1007/s11661-013-2166-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2166-0

Keywords

Navigation