Skip to main content
Log in

Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (−60 °C to −70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Mintz: Int. Mater. Rev., 2001, vol. 46, pp. 169-97.

    Article  CAS  Google Scholar 

  2. H. Bablik, F. Gotzl, R. Kukaczka: Werkst. U. Korro., 1951, vol. 2, pp. 163–65.

    Article  CAS  Google Scholar 

  3. M. Urednieck, J.S. Kirkaldy: Z. Metallkd., 1973, vol. 64, pp. 899-910.

    Google Scholar 

  4. M. Blumenau, M. Norden, F. Friedel, K. Peters: Surf. Coat. Tech., 2011, vol. 205, pp. 3319-27.

    Article  CAS  Google Scholar 

  5. E.M. Bellhouse, A.I.M. Mertens, J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 147-56.

    Article  Google Scholar 

  6. I. Hertveldt, S. Claessens, and B.C. De Cooman: Mater. Sci. Tech., 2001, vol. 17, pp. 1500–07.

  7. I. Hertveldt, S. Claessens, and B.C. De Cooman: Mater. Sci. Tech., 2001, vol. 17, pp. 1508–15.

  8. P. Drillet, Z. Zermout, D. Bouleau, and J. M. Mataigne: 5th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, 2001, Belgium, pp. 195.

  9. J. Mahieu, B.C. De Cooman, J. Maki, and S. Claessens: Iron Steelmaker, 2002, vol. 29, pp. 29–37.

  10. R. Khnodker, A. Mertens, J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157-65.

    Article  Google Scholar 

  11. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens: 6th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, 2004, pp. 1123.

  12. J. Foct, G. Reumont, G. Dupont, P. Perrot: J. Phys., 1993, vol. 3, pp. 961-6.

    CAS  Google Scholar 

  13. R.W. Sandelin: Wire and Wire Products, 1940, vol. 15, pp. 655.

    CAS  Google Scholar 

  14. J. Foct, P. Perrot, G. Reumont: Scr. Metall. Mater., 1993, vol. 28, pp. 1195-1200.

    Article  CAS  Google Scholar 

  15. M.S. Kozdras, P. Niessen: Metallography, 1989, vol. 22, pp. 253-67.

    Article  CAS  Google Scholar 

  16. N.Y. Tang: J. Phase Equilib. Diff., 2008, vol. 29, pp. 337-44.

    Article  CAS  Google Scholar 

  17. C.E. Jordan, A.R. Marder: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2683-94.

    Article  CAS  Google Scholar 

  18. C.S. Lin, M. Meshii, C.C. Cheng: ISIJ Int., 1995, vol. 35, pp. 503-11.

    Article  CAS  Google Scholar 

  19. S. Dionne: JOM-US, 2006, vol. 58, pp. 32-40.

    Article  CAS  Google Scholar 

  20. J.R. Kilpatrick: Prakt. Metallogr.-Pr. M., 1991, vol. 28, pp. 649-58.

    CAS  Google Scholar 

  21. C.S. Lin, M. Meshii: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 721-30.

    Article  CAS  Google Scholar 

  22. Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.

  23. Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.

  24. H. Liu, Y. He, S. Swaminathan, M. Rohwerder, L. Li: Surf. Coat. Tech., 2011, vol. 206, pp. 1237-43.

    Article  CAS  Google Scholar 

  25. E.M. Bellhouse, J.R. McDermid: Mater. Sci. Eng. A, 2008, vol. 491, pp. 39-46.

    Article  Google Scholar 

  26. A.S. Khanna: Introduction to High Temperature Oxidation and Corrosion, Materials Park, ASM International, USA, 2002, pp. 2-7.

    Google Scholar 

  27. H. Bake: ASM Handbook: Alloy Phase Diagrams, vol. 3, ASM International, Ohio, 1992, pp. 2–276.

  28. B. Schuhmacher, T. Heller, M. Steinhorst, and W. Warnecke: 7th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, 2007, Osaka, p. 397.

  29. M. Fujine: 7th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, 2007, Osaka, p. 374.

  30. J. Maki, J. Mahieu, B.C. De Cooman, and S. Claessens: Mater. Sci. Tech., 2003, vol. 19, pp. 125–31.

  31. J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–08.

  32. J. Mahieu, S. Claessens, B.C. De Cooman, and F. Goodwin: 6th Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet, 2004, Chicago, pp. 529.

  33. A.R.P. Ghuman and J.I. Glodstein: Metall. Trans. A, 1971, pp. 2903–14.

  34. A.R. Borzillo, W.C. Hahn: Trans. ASM, 1969, vol. 62, pp. 729-39.

    CAS  Google Scholar 

  35. J. Inagaki, Y. Sakurai, A. Nishimoto: Tetsu. Hagane., 1993, vol. 79, pp. 1273–77.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by China Steel Corporation, Kaohsiung, Taiwan. The authors would like to thank J. S. Lin of China Steel Corporation for his help on the preparation of galvanized and galvannealed steels using the hot-dip simulator of China Steel Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Sung Lin.

Additional information

Manuscript submitted November 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KC., Chu, PW., Lin, CS. et al. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels. Metall Mater Trans A 44, 2690–2698 (2013). https://doi.org/10.1007/s11661-013-1612-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1612-3

Keywords

Navigation