Skip to main content
Log in

Effect of Cold Rolling Reduction Rate on Secondary Recrystallized Texture in 3 Pct Si-Fe Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The phenomenon of secondary recrystallization in 3 pct Si-Fe electrical steel subjected to relatively high cold rolling reduction rates has been investigated. The texture of the secondary recrystallized sample that has a cold rolling reduction rate of 97.2 pct consists mainly of {110}〈112〉 component, which is quite different from the ideal Goss ({110}〈001〉) texture obtained after lower cold rolling reduction rates. The grain boundary character distribution (GBCD) analysis on the primary recrystallized sample with a cold rolling reduction rate of 97.2 pct indicates that the {110}〈112〉 component has the highest frequency of high energy (HE) boundary with a misorientation angle between 20 and 45 deg, whereas the Goss component in the sample subjected to lower cold rolling reduction rates has the highest frequency of HE boundary. These results indicate that the component with the highest frequency of HE boundary surrounding it after primary recrystallization has the privilege to outgrow other components during secondary recrystallization. However, the GBCD analysis for coincidence site lattice (CSL) boundary points out that the Goss component has the highest frequency of CSL boundaries in the primary recrystallized texture irrespective of the cold rolling reduction applied. These results suggest that the HE model can predict the orientation relationship between the primary and secondary recrystallized textures better than the CSL model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Hayakawa and J.A. Szpunar: Acta Mater., 1997, vol. 45, pp. 1285–95.

    Article  CAS  Google Scholar 

  2. Y. Hayakawa and J.A. Szpunar: Acta Mater., 1997, vol. 45, pp. 4713–20.

    Article  CAS  Google Scholar 

  3. Y. Hayakawa, M. Muraki, and J.A. Szpunar: Acta Mater., 1998, vol. 46, pp. 1063–73.

    Article  CAS  Google Scholar 

  4. Y. Hayakawa and M. Kurosawa: Acta Mater., 2002, vol. 50, pp. 4527–34.

    Article  CAS  Google Scholar 

  5. R. Shimizu and J. Harase: Acta Metall., 1989, vol. 37, pp. 1241–49.

    Article  CAS  Google Scholar 

  6. R. Shimizu, J. Harase, and D.J. Dingley: Acta Metall., 1990, vol. 38, pp. 973–78.

    Article  CAS  Google Scholar 

  7. J. Harase, R. Shimizu, and D.J. Dingley: Acta Metall. Mater., 1991, vol. 39, pp. 763–70.

  8. H. Homma and B. Hutchinson: Acta Mater., 2003, vol. 51, pp. 3795–05.

    Article  CAS  Google Scholar 

  9. Y. Ushigami, T. Kubota, and N. Takahashi: ISIJ Int., 1998, vol. 38, pp. 553–58.

    Article  CAS  Google Scholar 

  10. R.P. Siqueira, H.R.Z. Sandim, and T.R. Oliveira: Mater. Sci. Eng. A, 2008, vol. 497, pp. 216–23.

    Article  Google Scholar 

  11. S.B. Lee, N.M. Hwang, C.H. Han, and D.Y. Yoon: Scripta Mater., 1998, vol. 39, pp. 825–29.

    Article  CAS  Google Scholar 

  12. H. Park, D.Y. Kim, N.M. Hwang, Y.C. Joo, C.H. Han, and J.K. Kim: J. Appl. Phys., 2004, vol. 95, pp. 5515–21.

    Article  CAS  Google Scholar 

  13. D.K. Lee, K.J. Ko, B.J. Lee, and N.M. Hwang: Scripta Mater., 2008, vol. 58, pp. 683–86.

    Article  CAS  Google Scholar 

  14. K.J. Ko, A.D. Rollett, and N.M. Hwang: Acta Mater., 2010, vol. 58, pp. 4414–23.

    Article  CAS  Google Scholar 

  15. K.J. Ko, P.R. Cha, D. Srolovitz, and N.M. Hwang: Acta Mater., 2009, vol. 57, pp. 838–45.

    Article  CAS  Google Scholar 

  16. C.G. Dunn, F. Lionetti: Trans. AIME, 1949, vol. 185, pp. 125–32.

    Google Scholar 

  17. C.G. Dunn, F.W. Daniel, M.J. Bolton: Trans. AIME, 1950, vol. 188, pp. 368–73.

    CAS  Google Scholar 

  18. S. Taguchi and A. Sakakura: Acta Metall., 1966, vol. 14, pp. 405–23.

    Article  CAS  Google Scholar 

  19. M. Matsuo: ISIJ Int., 1989, vol. 29, pp. 809–27.

    Article  CAS  Google Scholar 

  20. S. Arai, Y. Ushigami, and N. Takahashi: Mat. Sci. Forum, 1996, vol. 204-206, pp. 617–22.

    Article  Google Scholar 

  21. K. Pawlik: Phys. Stat. Sol. (b), 1986, vol. 134, pp. 447–83.

  22. H.J. Bunge: Z. Metallk, 1965, vol. 56, pp. 872–74.

    CAS  Google Scholar 

  23. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  24. N. Rajmohan, J.A. Szpunar, and Y. Hayakawa: Acta Mater., 1999, vol. 47, pp. 2999–3008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Imamura.

Additional information

Manuscript submitted February 20, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamura, T., Shingaki, Y. & Hayakawa, Y. Effect of Cold Rolling Reduction Rate on Secondary Recrystallized Texture in 3 Pct Si-Fe Steel. Metall Mater Trans A 44, 1785–1792 (2013). https://doi.org/10.1007/s11661-012-1525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1525-6

Keywords

Navigation