Skip to main content
Log in

A Methodology for Determination of γ′ Site Occupancies in Nickel Superalloys Using Atom Probe Tomography and X-ray Diffraction

  • Symposium: Neutron and X-Ray Studies of Advanced Materials V
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A methodology for determining the preferred site occupancy of various alloying elements within ordered γ′ precipitates was developed and applied to Rene88 samples. The method utilized atom probe tomography and X-ray diffraction techniques with controlled monochromated synchrotron beams to determine element positions. Samples were solutionized at 1423 K (1150 °C) for 30 minutes and cooled at 24 K/min with subsequent aging at 1033 K (760 °C). The synchrotron X-ray diffraction results indicate that niobium prefers to reside on the aluminum sublattice site of the γ′ phase. Additionally, the results indicate that chromium prefers the nickel sublattice sites, while cobalt is likely to occupy both the aluminum and nickel sublattice sites. The X-ray results on the chromium occupancy disagree with atom probe results from the same alloy that indicate that chromium prefers the aluminum sublattice sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reed R.C. (2006) The Superalloys, Fundamentals and Applications. Cambridge: Cambridge University Press, p. 236.

    Book  Google Scholar 

  2. Telesman J., Kantzos P., Gayda J., Bonacuse P.J., Presecenzi A. (2004) Superalloys. Warrendale, PA: TMS Publications, p. 215.

    Book  Google Scholar 

  3. Stoloff N.S. (1987) Superalloys II. New York: John Wiley, p. 61.

    Google Scholar 

  4. Schafrik R.E., Walston S. (2008) Superalloys. TMS Publications, Warrendale, PA, p. 3.

    Book  Google Scholar 

  5. Guedou J.Y., Lecallier A., Naze L., Caron P., Locq D. (2008) Superalloys. TMS Publications, Warrendale, PA, p. 21.

    Book  Google Scholar 

  6. Babu S.S., Niller M.K., Vitek J.M., David S.A., Acta Mater, 49 (2001) 4149-4160.

    Article  CAS  Google Scholar 

  7. Singh A.R.P., Nag S., Hwang J.Y., Viswanathan G.B., Tiley J., Srinivasan R., Fraser H.L., Banerjee R. (2001) Mater Charact 62:878.

    Article  Google Scholar 

  8. Viswanathan G.B., Sarosi P.W., Henry M.F., Whitis D.D., Milligan W.W., Mills M.J. (2005) Acta Mater 53:81.

    Article  CAS  Google Scholar 

  9. Sondhi S.K., Dyson B.F., McLean M. (2004) Acta Mater 52:1761.

    Article  CAS  Google Scholar 

  10. Kassner M., Perez-Prado M.T., Fundamentals of Creep in Metals and Alloys, Sec Ed, Elsevier Inc (2009).

    Google Scholar 

  11. D.D. Krueger, R.D. Kissinger, R.D. Menzies, and C.S. Wukusick: U.S. Patent 4957567, 1990.

  12. Parthasararthy T.A., Rao S.I., Dimiduk D.M. (2004) Superalloys. TMS Publications, Warrendale, PA, p. 887.

    Book  Google Scholar 

  13. Wlodek S.T., Kelly M., Alden D.A. (1996) Superalloys. TMS Publications, Warrendale, PA, pp. 129-136.

    Google Scholar 

  14. Tiley J., Viswanathan G.B., Srinivasan R., Banerjee R., Dimiduk D.M., Fraser H.L. (2009) Acta Mater 57:2538–2549.

    Article  CAS  Google Scholar 

  15. Ardell A.J., Ozolins V. (2005) Nat Mater 4:309.

    Article  CAS  Google Scholar 

  16. Muralidharan G., Richardson Jr. J.W., Epperson J.E., Chen H. (1997) Scripta Mater. 36(5):543.

    Article  CAS  Google Scholar 

  17. Tiley J., Srinivasan R., Banerjee R., Viswanathan G.B., Toby B., Fraser H.L. (2009) Mater. Sci. Technol. 25(11):1369.

    Article  CAS  Google Scholar 

  18. M. Chaudhari, A. Singh, P. Gopal, S. Nag, G.B. Viswanathan, J. Tiley, R. Banerjee, and J. Du: Philos. Magn. Lett., 2012, in press.

  19. Guard R.W., Westbrook J.H. (1959) Trans. TMS-AIME. 215:807.

    CAS  Google Scholar 

  20. Jiang C., Gleeson B. (2006) Scripta Mater. 55:433.

    Article  CAS  Google Scholar 

  21. Wanderka N., Glatzel U. (1995) Mater Sci Eng A203:69.

    CAS  Google Scholar 

  22. Blavette D., Bostel A. (1984) Acta Mater 32(5):811.

    Article  CAS  Google Scholar 

  23. Blavetti D., Cadel E., Deconihout B. (2000) Mate Charact. 4:133-157.

    Article  Google Scholar 

  24. Miller M.K., Cerezo A., Hetherington M.G., Smith G.D.W. (1996) Atom Probe Field in Microscopy. Oxford University Press, Oxford, pp. 476-83.

    Google Scholar 

  25. Miller M.K. (2001) Micron 32:757-764.

    Article  CAS  Google Scholar 

  26. Seidman D.N., Sudbrack C.K., Yoon K.E. (2006) JOM 58:34-39.

    Article  CAS  Google Scholar 

  27. Yoon K.E., Noebe R.D., Seidman D.N. (2007) Acta Mater 55(4):1159.

    Article  CAS  Google Scholar 

  28. Hwang J.Y., Banerjee R., Tiley J., Srinivasan R., Viswanathan G.B., Fraser H.L. (2009) Met Mat Trans A 40A:24.

    Article  CAS  Google Scholar 

  29. Olson G.B., Jou H.J., Jung J., Sebastian J.T., Misra A., Locci I., Hull D. (2008) Superalloys. TMS Publications, Warrendale, PA, p. 923.

    Book  Google Scholar 

  30. Porter III W.J., Li K., Caton M.J., Jha S., Bartha B.B., Larsen J.M. (2008) Superalloys. TMS Publications,Warrendale, PA, p. 541.

    Book  Google Scholar 

  31. Tiley J., Viswanathan G.B., Hwang J.Y., Shiveley A., Banerjee R. (2010) Mater Sci Eng A 528:32.

    Article  Google Scholar 

  32. Littles Jr. J.W., Petit R.G., Schirra J.J., Cowles B.A., Holmes R.Q., Russ S.M., Rosenberger A.H., Larsen J.M. (2005) Materials Damage Prognosis. Warrendale, PA: TMS Publications, p. 23.

    Google Scholar 

  33. Karapetrova E., Ice G., Tischler J., Hong H., Zschack P., Nuclear Instruments and Methods in Physics Research A, 649 (2011) 52-54.

    Article  CAS  Google Scholar 

  34. http://www.aps.anl.gov/Beamlines/Directory/showbeamline.php?beamline_id=83.

  35. Sparks Jr. C.J., Ice G.E., Wong J., Batterman B.W. (1982) Nucl Instr Meth 195:73.

    Article  Google Scholar 

  36. Waasmaier D., Kirfel A., Acta Crystall. A51 (1995) 416-31.

    CAS  Google Scholar 

  37. Graef M.D., McHenry M.E. (2007) Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry. Cambridge University Press, Cambridge, p. 305.

    Google Scholar 

  38. Stone H.J., Peet M.J., Bhadeshia H.K.D.H., Proc. R. Soc. A 464 (2008) 1009-27.

    Article  CAS  Google Scholar 

  39. Hwang J.Y., Nag S., Singh A.R.P., Srinivasan R., Tiley J., Viswanathan G.B., Fraser H.L., Banerjee R., Metall. Mater. Trans. 40A (2009) 3059-68.

    Article  CAS  Google Scholar 

  40. Srinivasan R., Banerjee R., Hwang J.Y., Viswanathan G.B., Tiley J., Dimiduk D.M., Fraser H.L., Phys. Rev. Lett. 102 (2009) 086101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors greatly appreciate technical help from M. Lucas and E. Karapetrova in conducting the synchrotron X-ray experiments. Work at the Air Force Research Laboratory was supported by on-site contract No. FA8650-10-D-5226 conducted through UES, Inc., Dayton, Ohio, and by the Institute for Science and Engineering Simulation (ISES) under contract No. FA8650-08-C-5226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaimie S. Tiley.

Additional information

Manuscript submitted May 7, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiley, J.S., Senkov, O., Viswanathan, G. et al. A Methodology for Determination of γ′ Site Occupancies in Nickel Superalloys Using Atom Probe Tomography and X-ray Diffraction. Metall Mater Trans A 44, 31–38 (2013). https://doi.org/10.1007/s11661-012-1456-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1456-2

Keywords

Navigation