Skip to main content
Log in

Lattice Defects Diffuse Scattering from Thin Films of a Ge-Si System with Low-Energy Ar+ and Xe+ Bombardment During Molecular Beam Epitaxy (MBE) Growth

Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Homo–Ge, homo–Si, and hetero–Si0.2Ge0.8 alloy epitaxial layers, using molecular beam epitaxy (MBE), were grown on Ge and Si (001) substrates in order to study development of crystalline strains caused by ion bombardment during the growth of materials. Ion energies and ion/atom fluxes were used in the epitaxial growth, and significant lattice distortions along the growth direction developed. Using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM), the form of distortion, caused by low-energy argon (Ar+) and xenon (Xe+) bombardment of the thin epitaxial films grown on the (001) substrates, were investigated. The isotropic point defects case (of spherical distortions) occurs in epitaxial thin films “as-grown” processes. The intensity distribution has two maxima, one from the distorted layer and the other from the original unaffected matrix. The significant changes in the 2θ location, peak broadening and integrated intensity from the secondary (004)* reflections were obtained as a function of aging temperatures in the grown layers. Defects-induced diffuse scattering close to and between Bragg reflections supplies information on the strain and symmetry of the distortions fields and yields the atomic structure of point defects (self-interstitial, vacancies, and small clusters). First, aging heat treatment affects the distribution of distortions obtained in local regions at the “as-grown” layer, which develops to a special topography of continued distortions at higher aging temperatures. At aging temperatures above 923 K (650 °C), this extra diffraction peak disappears. The TEM observations reveal the appearance of dislocation lines with dark and bright contrasts around them, interdislocation strain contrasts, and disordered point defects atoms in the silicon region with semicoherent interfaces. The ion bombardment-induced formations and injection of the different types of pointlike defects and defects clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Schwebel, F. Mayer, G. Gautherin, and C. Pellet: J. Vac. Sci. Technol., 1986, vol. B4, pp. 1115–22.

    Google Scholar 

  2. F. Meyer, C. Schwebel, C. Pellet, G. Gautherin, A. Buxbaum, M. Eizenberg, and A. Raizman: Thin Solid Films, 1990, vol. 184, pp. 117–23.

    Article  CAS  Google Scholar 

  3. T. Ohmi, T. Ichikawa, T. Shibata, K. Matsudo, and H. Iwabuchi: Appl. Phys. Lett., 1988, vol. 53, pp. 45–48.

    Article  CAS  Google Scholar 

  4. S.M. Sze: VLSI Technology, McGraw-Hill, Columbus, OH, 1983, pp. 8–24.

    Google Scholar 

  5. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, and A. Lochtefeld: J. Appl. Phys., 2005, vol. 97, pp. 01111101–0111104.

  6. Y.K. Fang, C.T. Lin, and Y.T. Chang: IEEE Electron Dev. Lett., 2007, vol. 28 (2), pp. 111–13.

  7. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J.F. Pedersen, L.H. Frandsen, H.M. Kristensen, A.V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev: Nature, 2006, vol. 441, pp. 199–202.

  8. M.A. Krivoglaz: X-ray and Neutron Diffraction in Imperfect Crystals, 1983, Naukova Dumka, Kiev English Transl., Springer, New York, NY, 1996, pp. 4–24.

  9. R.I. Barabash and M.A. Krivoglaz: in Local Structure from Diffraction, eds., S.J.L. Billinge and M.F. Thorpe, Plenum Press, New York, 1998, pp. 233–51.

  10. P.F. Fewster: Semicond. Sci. Technol., 1993, vol. 8, pp. 1915–23.

    Article  CAS  Google Scholar 

  11. P.F. Fewster: J. Appl. Phys., 1994, vol. A58, pp. 121–27.

    CAS  Google Scholar 

  12. P. Van Der Sluis: J. Phys. D, 1993, vol. 26, pp. A195.

  13. G.V. Hansson, H.H. Radamson, and W.X. Ni: J. Mater. Sci., 1995, vol. 6, pp. 292–97.

    CAS  Google Scholar 

  14. C.J. Tsai, P. Rozenak, H.A. Atwater, and T. Vreeland: J. Cryst. Growth, 1991, vol. 111, pp. 931–35.

  15. P. Rozenak: J. Elect. Mater., 1997, vol. 26 (7), pp. 868–76.

  16. P. Rozenak: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 45–53.

    Google Scholar 

  17. D. Humbird and D.B. Graves: Pure Appl. Chem., 2002, vol. 74 (3), pp. 419–22.

    Article  CAS  Google Scholar 

  18. B. Strickland and C. Roland: Phys. Rev. B, 1995, vol. 51 (8), pp. 5061–64.

    Article  CAS  Google Scholar 

  19. S.T. Picraux, D.K. Brice, K.M. Horn, J.Y. Tsao, and E. Chason: Nucl. Inst. Meth. Phys. Res., 1990, vol. B48, pp. 414–18.

    CAS  Google Scholar 

  20. J.A. Floro, B.K. Kelleman, E. Chason, S.T. Picraux, D.K. Brice, and K.M. Horn: J. Appl. Phys., 1995, vol. 77 (6), pp. 2351–57.

  21. D.J. Douglas: Semicond. Sci. Technol., 2004, vol. 19, pp. R75–R108.

    Article  Google Scholar 

  22. B.S. Swartzentruber, C.M. Matzke, D.L. Kendall, and J.E. Houston: Surf. Sci., 1995, vol. 329, pp. 83–89.

    Article  CAS  Google Scholar 

  23. R.I. Barabash, J.S. Chung, and M.F. Thorpe: J. Phys.: Condens. Matter., 1999, vol. 11, pp. 3075–90.

    Article  CAS  Google Scholar 

  24. H. Peisl: J. de Physique, 1976, Collogue C7, supplement au no12, Tome 37, pp. C7-47–C7-53.

  25. P. Ehrhard: J. Nucl. Mater., 1978, vols. 69–70, pp. 200–14.

  26. E. Kasper and K. Lyutovich: Solid-State Electronics, 2004, vol. 48, p. 1265.

  27. R. Hull and J.C. Bean: Appl. Phys. Lett., 1989, vol. 54 (10), pp. 925–29.

  28. R. Hull: Properties of Crystalline Silicone, INSPEC Publications, Herts, U.K., 1999, pp. 6–39.

  29. M. Lyakas, T. Arazy, M. Eizenberg, V. Demuth, H.P. Strunk, N. Mosleh, and C. Schwebel: J. Appl. Phys., 1995, vol. 78 (8), pp. 4975–81.

  30. N.E. Lee, M. Matsuoka, M.R. Sardela, Jr., F. Tian, and J.E. Greene: J. Appl. Phys., 1996, vol. 80 (2), pp. 812–21.

  31. D. Parnis, E. Zolotoyabko, W.D. Kaplan, M. Eizenberg, N. Mosleh, F. Meyer, and C. Schwebel: Thin Solid Films, 1997, vol. 294, pp. 64–68.

    Article  CAS  Google Scholar 

  32. M.S. Phen, V. Cracium, K.S. Jones, J.L. Hasen, and A.N. Larsen: Nucl. Inst. Meth. Phys. Res. B, 2006, vol. 253, pp. 22–26.

    Article  CAS  Google Scholar 

  33. D. Srivastava, R.S. Taylor, and B.J. Garrison: J. Vac. Sci. Technol., 1991, vol. B9 (3), pp. 1517–23.

Download references

Acknowledgment

The author would like to thank the Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology for permitting the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rozenak.

Additional information

Manuscript submitted February 26, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenak, P. Lattice Defects Diffuse Scattering from Thin Films of a Ge-Si System with Low-Energy Ar+ and Xe+ Bombardment During Molecular Beam Epitaxy (MBE) Growth. Metall Mater Trans A 44, 102–114 (2013). https://doi.org/10.1007/s11661-012-1448-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1448-2

Keywords

Navigation