Skip to main content
Log in

Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in α-Fe

  • Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Material strengthening and embrittlement are controlled by complex intrinsic interactions between dislocations and hydrogen-induced defect structures that strongly alter the observed deformation mechanisms in materials. In this study, we reported molecular statics simulations at zero temperature for pure α-Fe with a single H atom at an interstitial and vacancy site, and two H atoms at an interstitial and vacancy site for each of the 〈100〉, 〈110〉, and 〈111〉 symmetric tilt grain boundary (STGB) systems. Simulation results show that the grain boundary (GB) system has a smaller effect than the type of H defect configuration (interstitial H, H-vacancy, interstitial 2H, and 2H-vacancy). For example, the segregation energy of hydrogen configurations as a function of distance is comparable between symmetric tilt GB systems. However, the segregation energy of the 〈100〉 STGB system with H at an interstitial site is 23 pct of the segregation energy of 2H at a similar interstitial site. This implies that there is a large binding energy associated with two interstitial H atoms in the GB. Thus, the energy gained by this H-H reaction is ~54 pct of the segregation energy of 2H in an interstitial site, creating a large driving force for H atoms to bind to each other within the GB. Moreover, the cohesive energy values of 125 STGBs were calculated for various local H concentrations. We found that as the GB energy approaches zero, the energy gained by trapping more hydrogen atoms is negligible and the GB can fail via cleavage. These results also show that there is a strong correlation between the GB character and the trapping limit (saturation limit) for hydrogen. Finally, we developed an atomistic modeling framework to address the probabilistic nature of H segregation and the consequent embrittlement of the GB. These insights are useful for improving ductility by reengineering the GB character of polycrystalline materials to alter the segregation and embrittlement behavior in α-Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. H. Johnson, “On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids,” Proceedings of the Royal Society of London, vol. 23, pp. 168-179, Jan. 1874.

    Article  Google Scholar 

  2. K. Sadananda and A. K. Vasudevan, “Review of Environmentally Assisted Cracking,” Metallurgical and Materials Transactions A, vol. 42, no. 2, pp. 279-295, Dec. 2010.

    Google Scholar 

  3. S. Lynch, Corros. Rev., 2012, vol. 30 (3–4).

  4. H. Vehoff and W. Rothe, “Gaseous hydrogen embrittlement in FeSi- and Ni-single crystals,” Acta Metallurgica, vol. 31, no. 11, pp. 1781-1793, Nov. 1983.

    Article  CAS  Google Scholar 

  5. R.. Oriani, “The diffusion and trapping of hydrogen in steel,” Acta Metallurgica, vol. 18, no. 1, pp. 147-157, Jan. 1970.

    Article  CAS  Google Scholar 

  6. A. Barnoush and H. Vehoff, “Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation,” Acta Materialia, vol. 58, no. 16, pp. 5274-5285, Sep. 2010.

    Article  CAS  Google Scholar 

  7. R. P. Gangloff (2006) Critical Issues in Hydrogen Assisted Cracking of Structural Alloys. Department of Materials Science and Engineering, University of Virginia, Charlottesville

    Google Scholar 

  8. K. N. Solanki, D. K. Ward, and D. J. Bammann, “A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System,” Metallurgical and Materials Transactions A, vol. 42, no. 2, pp. 340-347, Oct. 2010.

    Google Scholar 

  9. J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” Metallurgical Transactions A, vol. 11, no. 6, pp. 861-890, Jun. 1980.

    CAS  Google Scholar 

  10. H. K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture,” Materials Science and Engineering: A, vol. 176, no. 1–2, pp. 191-202, Mar. 1994.

    CAS  Google Scholar 

  11. B. Ladna and H. K. Birnbaum, “A study of hydrogen transport during plastic deformation,” Acta Metallurgica, vol. 35, no. 7, pp. 1775-1778, Jul. 1987.

    Article  CAS  Google Scholar 

  12. I. M. Robertson, “The effect of hydrogen on dislocation dynamics,” Engineering Fracture Mechanics, vol. 68, no. 6, pp. 671-692, Apr. 2001.

    Article  Google Scholar 

  13. H. Kimura and H. Matsui, in Hydrogen effects in metals: Proceedings of the third international conference on effect of hydrogen on behavior of materials, Moran, Wyoming, 1981, pp. 192-207.

    Google Scholar 

  14. A. M. Brass and A. Chanfreau, “Accelerated diffusion of hydrogen along grain boundaries in nickel,” Acta Materialia, vol. 44, no. 9, pp. 3823-3831, Sep. 1996.

    Article  CAS  Google Scholar 

  15. T. Tsuru and R. M. Latanision, “Grain boundary transport of hydrogen in nickel,” Scripta Metallurgica, vol. 16, no. 5, pp. 575-578, May 1982.

    Article  CAS  Google Scholar 

  16. S.-M. Lee and J.-Y. Lee, “The trapping and transport phenomena of hydrogen in nickel,” Metallurgical Transactions A, vol. 17, no. 2, pp. 181-187, Feb. 1986.

    CAS  Google Scholar 

  17. K. S. Shin, C. G. Park, and M. Meshii, “Effects of strain rate, purity and thermal history on mechanical behavior of cathodically charged iron,” in Hydrogen effects in metals: proceedings of the Third International Conference on Effect of Hydrogen on Behavior of Materials, Moran, Wyoming, 1980, p. 209.

    Google Scholar 

  18. P. Sofronis and J. Lufrano, “Interaction of local elastoplasticity with hydrogen: embrittlement effects,” Materials Science and Engineering: A, vol. 260, no. 1–2, pp. 41-47, Feb. 1999.

    Google Scholar 

  19. P. Sofronis, Y. Liang, and N. Aravas, “Hydrogen induced shear localization of the plastic flow in metals and alloys,” European Journal of Mechanics - A/Solids, vol. 20, no. 6, pp. 857-872, Nov. 2001.

    Article  Google Scholar 

  20. J. Yao and J. R. Cahoon, “Experimental studies of grain boundary diffusion of hydrogen in metals,” Acta Metallurgica et Materialia, vol. 39, no. 1, pp. 119-126, Jan. 1991.

    Article  CAS  Google Scholar 

  21. M. Yamaguchi, M. Shiga, and H. Kaburaki, “Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System,” Science, vol. 307, no. 5708, pp. 393-397, Jan. 2005.

    Article  CAS  Google Scholar 

  22. M. Yamaguchi, K.-I. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki, “First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems,” Metallurgical and Materials Transactions A, vol. 42A, pp. 330-339, Aug. 2010.

    Google Scholar 

  23. R. W. Fuller et al., “Failure analysis of AISI 304 stainless steel shaft,” Engineering Failure Analysis, vol. 15, no. 7, pp. 835-846, Oct. 2008.

    Article  CAS  Google Scholar 

  24. S. B. Gesari, M. E. Pronsato, and A. Juan, “The electronic structure and bonding of H pairs at Σ = 5 BCC Fe grain boundary,” Applied Surface Science, vol. 187, no. 3–4, pp. 207-217, Feb. 2002.

    Article  CAS  Google Scholar 

  25. A. Pedersen and H. Jónsson, “Simulations of hydrogen diffusion at grain boundaries in aluminum,” Acta Materialia, vol. 57, no. 14, pp. 4036-4045, Aug. 2009.

    Article  CAS  Google Scholar 

  26. A. Ramasubramaniam, M. Itakura, and E. A. Carter, “Interatomic potentials for hydrogen in α–iron based on density functional theory,” Physical Review B, vol. 79, no. 17, p. 174101, May 2009.

    Article  Google Scholar 

  27. M. A. Tschopp, K. N. Solanki, F. Gao, X. Sun, M. A. Khaleel, and M. F. Horstemeyer, “Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe,” Physical Review B, vol. 85, no. 6, p. 064108, Feb. 2012.

    Article  Google Scholar 

  28. M. A. Tschopp, M. F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel, “Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies,” Scripta Materialia, vol. 64, no. 9, pp. 908-911, May 2011.

    Article  CAS  Google Scholar 

  29. M. A. Tschopp, K. N. Solanki, M. I. Baskes, F. Gao, X. Sun, and M. F. Horstemeyer, “Generalized framework for interatomic potential design: Application to Fe–He system,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 22-32, Jun. 2012.

    Article  CAS  Google Scholar 

  30. J. Song and W. A. Curtin, “A nanoscale mechanism of hydrogen embrittlement in metals,” Acta Materialia, vol. 59, no. 4, pp. 1557-1569, Feb. 2011.

    Article  CAS  Google Scholar 

  31. E. Hayward and C. Deo, “Energetics of small hydrogen–vacancy clusters in bcc iron,” Journal of Physics: Condensed Matter, vol. 23, no. 42, p. 425402, Oct. 2011.

    Article  Google Scholar 

  32. J. E. Angelo, N. R. Moody, and M. I. Baskes, “Trapping of hydrogen to lattice defects in nickel,” Modelling and Simulation in Materials Science and Engineering, vol. 3, no. 3, pp. 289-307, May 1995.

    Article  CAS  Google Scholar 

  33. S. Taketomi, R. Matsumoto, N. Miyazaki (2008) Acta Materialia 56(15):3761-3769

    Article  CAS  Google Scholar 

  34. N.R. Rhodes, M.A. Tschopp, and K.N. Solanki: arXiv:1206.5385, June 2012.

  35. M. A. Tschopp and D. L. McDowell, “Asymmetric tilt grain boundary structure and energy in copper and aluminium,” Philosophical Magazine, vol. 87, no. 25, pp. 3871-3892, 2007.

    Article  CAS  Google Scholar 

  36. M. A. Tschopp and D. L. McDowell, “Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium,” Philosophical Magazine, vol. 87, no. 22, pp. 3147-3173, 2007.

    Article  CAS  Google Scholar 

  37. X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, and B. P. Uberuaga, “Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission,” Science, vol. 327, no. 5973, pp. 1631-1634, Mar. 2010.

    Article  CAS  Google Scholar 

  38. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, Mar. 1995.

    Article  CAS  Google Scholar 

  39. J. Friedel, “The distribution of electrons round impurities in monovalent metals,” Philosophical Magazine Series 7, vol. 43, no. 337, pp. 153-189, 1952.

    CAS  Google Scholar 

  40. M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, vol. 29, no. 12, pp. 6443-6453, Jun. 1984.

    Article  CAS  Google Scholar 

  41. M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review Letters, vol. 50, no. 17, pp. 1285-1288, Apr. 1983.

    Article  CAS  Google Scholar 

  42. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron,” Philosophical Magazine, vol. 83, no. 35, pp. 3977-3994, 2003.

    Article  CAS  Google Scholar 

  43. A. P. Sutton and V. Vitek, “On the Structure of Tilt Grain Boundaries in Cubic Metals I. Symmetrical Tilt Boundaries,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 309, no. 1506, pp. 1-36, Mar. 1983.

    Article  CAS  Google Scholar 

  44. J. D. Rittner and D. N. Seidman, tilt grain-boundary structures in fcc metals with low stacking-fault energies,” Physical Review B, vol. 54, no. 10, pp. 6999-7015, 1996.

    Article  CAS  Google Scholar 

  45. B. Polak and G. Ribiere, “Note surla convergence des m′ethodes de directions conjugu′ees,” Rev. Fr. Imform. Rech. Oper., vol. 16, pp. 35-43, 1969.

    Google Scholar 

  46. X. Liu, X. Wang, J. Wang, and H. Zhang, “First-principles investigation of Mg segregation at Σ = 11(113) grain boundaries in Al,” Journal of Physics: Condensed Matter, vol. 17, no. 27, pp. 4301-4308, Jul. 2005.

    Article  CAS  Google Scholar 

  47. J. R. Rice and J.-S. Wang, “Embrittlement of interfaces by solute segregation,” Materials Science and Engineering: A, vol. 107, no. 0, pp. 23-40, Jan. 1989.

    Google Scholar 

  48. A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, “Phase-field model of solute trapping during solidification,” Physical Review E, vol. 47, no. 3, pp. 1893-1909, Mar. 1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. A.K. Vasudevan and Dr. W. Mullins from the Office of Naval Research for providing insights and valuable suggestions. This article is based on the study supported by the Office of Naval Research under contract No. N000141110793. MAT would like to acknowledge the support provided by the U.S. Department of Energy under contract No. DE-AC05-76RL01830. The authors also appreciate the support provided by the Fulton High Performance Computing at Arizona State University for enabling the authors to conduct part of the simulations for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran N. Solanki.

Additional information

Manuscript submitted April 2, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, K.N., Tschopp, M.A., Bhatia, M.A. et al. Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in α-Fe. Metall Mater Trans A 44, 1365–1375 (2013). https://doi.org/10.1007/s11661-012-1430-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1430-z

Keywords

Navigation