Skip to main content
Log in

A New Nonmetallic Inclusion Rating Method by Positive Use of Hydrogen Embrittlement Phenomenon

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new inclusions rating method using hydrogen embrittlement of a tensile test specimen is proposed. This method is essentially based on the statistics of extremes for inclusion rating where the maximum inclusion size is determined by simple tensile testing of a hydrogen-precharged (H-precharged) specimen. Tensile tests were conducted using two bearing steels (SAE52100 HV 346, HV 447, HV 559, HV 611, HV 678 and ASTM-A485-1 HV 706, HV 715) and one spring steel (SAE5160, HV 651). Fatigue tests were conducted using SAE52100 bearing steel (HV 682). All H-precharged tensile specimens (SAE52100, ASTM-A485-1 and SAE5160) were fractured from internal inclusions except the SAE52100 tensile specimens with a Vickers hardness of HV 346. It was confirmed that the distribution of extreme values of inclusion sizes obtained by SAE52100 tensile testing with H-precharged specimens coincided with those obtained by SAE52100 fatigue testing. From these results, it is presumed that the inclusion rating method by fatigue testing can be replaced by simple tensile testing with H-precharged specimens. The proposed method is more convenient and reliable than other existing inclusion rating methods, i.e., fatigue testing and optical microscopy. The proposed method can be applied to specimens with a Vickers hardness of higher than HV 447.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Y. Murakami: Metal Fatigue: Effect of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, U.K., 2002.

    Google Scholar 

  2. P.H. Frith: J. Iron Steel Inst., 1955, vol. 180, pp. 26–33.

    Google Scholar 

  3. Y. Murakami, S. Kodama, and S. Konuma: Int. J. Fatigue, 1989, vol. 11, pp. 291–98.

    Article  CAS  Google Scholar 

  4. ASTM E2283-08: Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features, ASTM, West Conshohocken, PA, 2008.

  5. Y. Murakami, M. Takada, and T. Toriyama: Int. J. Fatigue, 1998, vol. 20, pp. 661–67.

    Article  CAS  Google Scholar 

  6. S. Zhou, Y. Murakami, Y. Fukushima, and S. Beretta: Tetsu-to-Hagane, 2001, vol. 87, pp. 748–55.

    CAS  Google Scholar 

  7. S. Zhou, Y. Murakami, S. Beretta, and Y. Fukushima: Mater. Sci. Technol., 2002, vol. 18, pp. 1535–43.

    Article  CAS  Google Scholar 

  8. S. Beretta and Y. Murakami: Metall. Mater. Trans. B, 2001, vol. 32, pp. 517–23.

    Article  CAS  Google Scholar 

  9. Y. Furuya, S. Matsuoka, and T. Abe: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2517–26.

    Article  CAS  Google Scholar 

  10. R.M. Vennet and G.S. Ansell: Trans. Am. Soc. Met., 1967, vol. 60, pp. 242–51.

    Google Scholar 

  11. H. Cialone and R.J. Asaro: Metall. Trans. A, 1979, vol. 10A, pp. 367–75.

    CAS  Google Scholar 

  12. Y. Murakami and S. Matsuoka: Eng. Fract. Mech., 2010, vol. 77, pp. 1926–40.

    Article  Google Scholar 

  13. Y. Murakami, S. Matsuoka, Y. Kondo, and S. Nishimura: Mechanism of Hydrogen Embrittlement and Guide for Fatigue Design, Youkendo, Co., Ltd., 2012.

  14. S. Fukui: Tetsu-to-Hagane, 1969, vol. 55, pp. 151–61.

    CAS  Google Scholar 

  15. JIS G 0555: Microscopic Testing Method for the Non-Metallic Inclusions in Steel, Japanese Standards Association, Tokyo, 2008, pp. 682–712.

  16. A. Adachi, H. Shoji, A. Kuwabara, and Y. Inoue: Electr. Furnace Steel, 1975, vol. 46, pp. 176–82.

    Article  Google Scholar 

  17. T. Matsuo, N. Homma, S. Matsuoka, and Y. Murakami: JSME Trans. A, 2008, vol. 74, pp. 1164–73.

    Article  CAS  Google Scholar 

  18. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1327–39.

    Article  CAS  Google Scholar 

  19. Y. Murakami and J. Nagata: Trans. Jpn. Soc. Mech. Eng. A., 2004, vol. 70, pp. 1093–1101.

    Article  Google Scholar 

  20. R. Takahashi and M. Shibuya: Ann. Inst. Stat. Math., 1996, vol. 48, pp. 127–44.

    Article  Google Scholar 

  21. R. Takahashi and M. Shibuya: Ann. Inst. Stat. Math., 1998, vol. 50, pp. 361–77.

    Article  Google Scholar 

  22. Y. Furuya: Tetsu-to-Hagane, 2009, vol. 95, pp. 426–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor D. Socie and Professor P. Sofronis of University of Illinois and Dr. B. Somerday of Sandia National Laboratory for their useful discussion and comments. This research has been supported by the NEDO project “Fundamental Research Project on Advanced Hydrogen Science (2006–2012)”. The authors gratefully acknowledge the support of the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sport, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukitaka Murakami.

Additional information

Manuscript submitted February 22, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, S., Murakami, Y. A New Nonmetallic Inclusion Rating Method by Positive Use of Hydrogen Embrittlement Phenomenon. Metall Mater Trans A 44, 303–322 (2013). https://doi.org/10.1007/s11661-012-1376-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1376-1

Keywords

Navigation