Skip to main content
Log in

Effects of Rotation Rates on Microstructure, Mechanical Properties, and Fracture Behavior of Friction Stir-Welded (FSW) AZ31 Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three rotation rates were selected for friction stir welded (FSW) rolled AZ31 plates, at a constant welding speed of 100 mm/minutes. As the rotation rate was increased from 800 and 2000 to 3500 rpm, the nugget shape varied from a basin- or ellipse-shaped homogeneous structure to a two-layer structure. The grain characteristic was similar in the nugget zones (NZs) at 800 and 2000 rpm, with the column-rotated basal plane. However, at 3500 rpm, the equiaxed fine grains and column-rotated basal plane were found in the lower zone of the two-layer structure, while elongated coarse grains and the basal plane with little inclination comparable to that in the parent material (PM) were detected in the upper zone. Tensile tests indicated that the fracture behaviors of the FSW AZ31 joints at 800 and 2000 rpm were similar with the weak zones being located at the NZ middle and along the boundary between the NZ and the thermo-mechanically affected zone, while contrasting fracture features were found at 3500 rpm. The ultimate tensile strength (UTS) of the joints increased as the rotation rate increased, with the highest UTS being about 95 pct of the PM at 3500 rpm. The variations in the strength and fracture behavior of the joints with the rotation rate were accounted for by the variation in the texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1-78.

    Article  Google Scholar 

  2. W.B. Lee, Y.M. Yeon, S.B. Jung: Mater. Sci. Technol., 2003, vol. 19, pp. 785-790.

    Article  CAS  Google Scholar 

  3. S. Lin, S. Kim, C.G. Lee, C.D. Yim, and S.J. Kim: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1906–12.

  4. M.A. Gharacheh, A.H. Kokabi, G.H. Daneshi, B. Shalchi Amirkhiz, R. Sarrafi: Int. J. Mach. Tool Manuf., 2006, vol. 46, pp. 1983-1987.

    Article  Google Scholar 

  5. L. Commin, M. Dumont, J.E. Masse, L. Barrallier: Acta Mater., 2009, vol. 57, pp. 326-334.

    Article  CAS  Google Scholar 

  6. N. Afrin, D.L. Chen, X. Cao, M. Jahazi: Mater. Sci. Eng. A, 2008, vol. 472, pp. 179-186.

    Article  Google Scholar 

  7. X.H. Wang and K.S. Wang: Mater. Sci. Eng. A, 2006, vol. 431, pp. 114–17.

    Article  Google Scholar 

  8. J. Yang, D. Wang, B.L. Xiao, and Z.Y. Ma: 8th International Friction Stir Welding Symposium: Timmendorfer Strand, Germany, 2010.

  9. J. Yang, B.L. Xiao, D. Wang, Z.Y. Ma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 708-714.

    Article  Google Scholar 

  10. W. Woo, H. Choo, D. W. Brown, P.K. Liaw, Z. Feng: Scripta Mater., 2006, vol. 54, pp. 1859-1864.

    Article  CAS  Google Scholar 

  11. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, C.W. Lee: Acta Mater., 2009, vol. 57, pp. 5406-5418.

    Article  CAS  Google Scholar 

  12. S. Mironov, Q. Yang, H. Takahashi, I. Takahashi, K. Okamoto, Y.S. Sato, H. Kokawa: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1016-1024.

    Article  CAS  Google Scholar 

  13. S. Mironov, Y. Motohashil, R. Kaibyshev: Mater. Trans., 2007, vol. 48, pp. 1387-1395.

    Article  CAS  Google Scholar 

  14. G.M. Xie, Z.Y. Ma, L. Geng, R.S. Chen: Mater. Sci. Eng. A, 2007, vol. 471, pp. 63-68.

    Article  Google Scholar 

  15. D.T. Zhang, M. Suzuki, K. Maruyama: Scripta Mater., 2005, vol. 52, pp. 899-903.

    Article  CAS  Google Scholar 

  16. W.J. Kim, S.I. Hong, K.S. Kim, S.H. Min, H.T. Jeong, J.D. Lee: Acta Mater., 2003, vol. 51, pp. 3293-3307.

    Article  CAS  Google Scholar 

  17. S.H.C. Park, Y.S. Sato, H. Kokawa: Metall. Mater. Trans. A, 2003, vol. 34, pp. 987-994.

    Article  CAS  Google Scholar 

  18. S.H.C. Park, Y.S. Sato, H. Kokawa: Scripta Mater., 2003, vol. 49, pp. 161-166.

    Article  CAS  Google Scholar 

  19. W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma, R. Kubic: Scripta Mater., 2011, vol. 64, pp. 580-583.

    Article  CAS  Google Scholar 

  20. M.Y. Wang, R.L. Xin, B.S. Wang, Q. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2941-2951.

    Article  Google Scholar 

  21. A.H. Feng, Z.Y. Ma: Acta Mater., 2009, vol. 57, pp. 4248-4260.

    Article  CAS  Google Scholar 

  22. J.A. Del Valle, M.T. Perez-Prado, O.A. Ruano: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1427-1438.

    Article  Google Scholar 

  23. Ø. Frigaard, Ø. Grong, O.T. Midling: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1189-1200.

    Article  CAS  Google Scholar 

  24. K. Kumar, S.V. Kailas: Mater. Sci. Eng. A, 2008, vol. 485, pp. 367-374.

    Article  Google Scholar 

  25. Z. Zhang, B.L. Xiao, D. Wang, Z.Y. Ma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1717-1726.

    Article  Google Scholar 

  26. W. J. Arbegast: Scripta Mater., 2008, vol. 58, pp. 372-376.

    Article  CAS  Google Scholar 

  27. Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan: Metall. Mater. Trans. A, 1999, vol. 34A, pp. 2429-2437.

    Article  Google Scholar 

  28. Z.Y. Ma, S.R. Sharma, R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 433, pp. 269-278.

    Article  Google Scholar 

  29. Z.W. Chen, T. Pasang, Y. Qi: Mater. Sci. Eng. A, 2008, vol. 474, pp. 312-316.

    Article  Google Scholar 

  30. X.X. Zhang, B.L. Xiao, Z.Y. Ma: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3229-3239.

    Article  Google Scholar 

  31. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva: Mater. Sci. Eng. A, 2002, vol. 337, pp. 121-133.

    Article  Google Scholar 

  32. C. I. Chang, X. H. Du, J. C. Huang: Scripta Mater., 2007, vol. 57, pp. 209-212.

    Article  CAS  Google Scholar 

  33. C. I. Chang, C. J. Lee, J. C. Huang: Scripta Mater., 2004, vol. 51, pp. 509-514.

    Article  CAS  Google Scholar 

  34. F.C. Liu, Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2378-2388.

    Article  CAS  Google Scholar 

  35. S.Y. Mironov, G.A. Salishchev, M.M. Myshlyaev, R. Pippan: Mater. Sci. Eng. A, 2006, vol. 418, pp. 257-267.

    Article  Google Scholar 

  36. J. Koike: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1689-1696.

    Article  CAS  Google Scholar 

  37. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet: Acta Mater., 2007, vol. 55, pp. 3899-3910.

    Article  CAS  Google Scholar 

  38. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409-418.

    Google Scholar 

  39. B.C. Wonsiewicz, W.A. Backofen: Trans. TMS-AIME, 1967, vol. 239, pp. 1422-1487.

    CAS  Google Scholar 

  40. R.E. Reedhill, W.D. Robertson: Acta Metall., 1957, vol. 5, pp. 717-727.

    Article  CAS  Google Scholar 

  41. H. Yoshinag,T. Obara, S. Morozumi: Mater. Sci. Eng., 1973, vol. 12, pp. 255-264.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National R&D Program of China under grant No. 2011BAE22B05, the National Outstanding Young Scientist Foundation of China under grant No. 50525103, and the Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma.

Additional information

Manuscript submitted January 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wang, D., Xiao, B.L. et al. Effects of Rotation Rates on Microstructure, Mechanical Properties, and Fracture Behavior of Friction Stir-Welded (FSW) AZ31 Magnesium Alloy. Metall Mater Trans A 44, 517–530 (2013). https://doi.org/10.1007/s11661-012-1373-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1373-4

Keywords

Navigation