Skip to main content
Log in

Application of In Situ Neutron and X-Ray Measurements at High Temperatures in the Development of Co-Re-Based Alloys for Gas Turbines

Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the current day single crystal Ni-based superalloys. The Co-Re-based alloys have been designed to have very high melting range, and they are meant for application at +373 K (+100 °C) above Ni-superalloys. They are significantly different from the conventional Co-based alloys that are used in static components of today’s gas turbines, and the Co-Re alloys have never been used for structural applications before. The Co-Re-Cr system has complex microstructure with many different phases present. Phase transformations and stabilities of fine strengthening precipitates at high temperatures remain mostly unexplored in the Co-Re alloys, and to develop basic understanding, model ternary and quaternary compositions were studied within the alloy development program. In situ neutron and synchrotron measurements at high temperatures were extensively used for this purpose, and some recent results from the in situ measurements are presented. In particular, the effect of boron doping in Co-Re alloys and the stabilities of the fine TaC precipitates at high temperatures were investigated. A fine dispersion of TaC precipitates strengthens some Co-Re alloys, and their stabilities at the application temperatures are critical. In the beginning, the alloy development strategy is very briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. J.H. Perepezko: Science, 2009, vol. 326, pp. 1068–69.

  2. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  3. S. Miller: Abstracted from Materials World, 1996, vol. 4, pp. 446–49, “Advanced Materials Mean Advanced Engines” www.azom.com/details.asp?ArticleID=90.

  4. J. Rösler, D. Mukherji, and T. Baranski: Adv. Eng. Mater., 2007, vol. 9, pp. 876–81.

    Article  Google Scholar 

  5. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.

    Article  CAS  Google Scholar 

  6. A. Suzuki and T.M. Pollock: Acta Mater., 2008, vol. 56, pp. 1288–97.

    Article  CAS  Google Scholar 

  7. B. Gorr, S. Burk, T. Depka, C. Somsen, H. Abu-Samra, H.J. Christ, and G. Eggeler: Int. J. Mater. Res., 2012, vol. 103, pp. 24–30.

    Article  CAS  Google Scholar 

  8. D. Mukherji, J. Rösler, J. Wehrs, H. Eckerlebe, and R. Gilles: unpublished research, 2012.

  9. D. Mukherji, J. Rösler, T. Fricke, S. Piegert, and F. Schmitz: in Energy & Environment, J. Lecomte, Q. Contrepois, T. Beck, and B. Kuhn, eds., Jülich Forschingszentrum, vol. 94, ISBN 978-3-89336-685-9, 2010, pp. 633–42.

  10. D. Mukherji, P. Strunz, R. Gilles, M. Hofmann, F. Schmitz, and J. Rösler: Mater. Lett., 2010, vol. 64, pp. 2608–11.

    Article  CAS  Google Scholar 

  11. A.I. Gusev, A.A. Rempel, and A.J. Magerl: Disorder and Order in Strongly Nonstoichiometric Compounds, Springer, Berlin, 2010.

    Google Scholar 

  12. D. Mukherji, J. Rösler, M. Krüger, M. Heilmaier, M.-C. Bölitz, R. Völkl, U. Glatzel, and L. Szentmiklósi: Scripta Mater., 2012, vol. 66, pp. 60–63.

    Article  CAS  Google Scholar 

  13. Handbook of Prompt Gamma Activation Analysis with Neutron Beams, G.L. Molnár, ed., Kluwer Academic Publishers, Dordrecht, 2004.

  14. Zs. Révay: Anal. Chem., 2009, vol. 81, pp. 6851–59.

  15. L. Szentmiklósi, T. Belgya, Zs. Révay, and Z. Kis: J. Radioanal. Nucl. Chem., 2010, vol. 286, pp. 501–05.

    Article  Google Scholar 

  16. D. Mukherji, L. Szentmiklósi, Zs. Mácsik, and J. Rösler: unpublished research.

  17. M. Hofmann, R. Schneider, G.A. Seidl, J. Kornmeier, R. Wimpory, U. Garbe, and H.G. Brokmeier: Physica B, 2006, vols. 385–368, pp. 1035–37.

    Article  Google Scholar 

  18. R. Gilles, M. Hoelzel, M. Schlapp, F. Elf, B. Krimmer, H. Boysen, and H. Fuess: Z. Kristallogr. Suppl., 2006, vol. 23, pp. 183–86.

    Article  Google Scholar 

  19. T. Lippmann, L. Lottermoser, F. Beckmann, R.V. Martins, T. Dose, and R. Kirchhof: in HASYLAB Annual Report 2007, W. Caliebe, W. Drube, K. Rickers, and J.R. Schneider, eds., HASYLAB/DESY, Hamburg, 2007, p. 113–17.

  20. D. Mukherji and J. Rösler: J. Phys. Conf. Series, 2010, vol. 240, 012066 (4 pp).

  21. M-C. Bölitz, M. Brunner, R.Völkl, D. Mukherji, J. Roesler, and U. Glatzel: Int. J. Mater. Res., 2012, vol. 103, pp. 554–58.

    Article  Google Scholar 

  22. M. Thuvander and K. Stiller: Mater. Sci. Eng. A, 2000, vol. 281, pp. 96–103.

    Article  Google Scholar 

  23. E. Cadel, D. Lemarchand, S. Chambrel, and D. Blavette: Acta Mater., 2002, vol. 50, pp. 957–66.

    Article  CAS  Google Scholar 

  24. H.J. Kim, Z. En, J.H. Ho, J.S. Jang, N. Jurneav, and M.M. Usmanova: J. Radioanal. Nucl. Chem., 1997, vol. 216, pp. 117–20.

    Article  CAS  Google Scholar 

  25. R. Gilles, D. Mukherji, P. Strunz, M. Hofmann, M. Hoelzel, B. Barbier, H. Euler, J. Roesler, and U. Gasser: Acta Mater., 2012, in press.

  26. T. Depka, C. Somsen, G. Eggeler, D. Mukherji, J. Rösler, M. Krüger, H. Saage, and M. Heilmaier: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 337–41.

    Google Scholar 

  27. M. Brunner, R. Hüttner, M.-C. Bölitz, R. Völkl, D. Mukherji, J. Rösler, T. Depka, C. Somsen, G. Eggeler, and U. Glatzel: Mater. Sci. Eng. A, 2010, vol. 528, pp. 650–56.

    Article  Google Scholar 

  28. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  29. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Häuser: High Press. Res., 1996, vol. 14, pp. 235–48.

    Article  Google Scholar 

  30. D. Mukherji, P. Strunz, S. Piegert, R. Gilles, M. Hofmann, M. Hölzel, and J. Rösler: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1834–44.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for providing the financial support of this research in the frame of the DFG Forschergruppe program (FOR 727): “Beyond Ni-base Superalloys.” The authors also gratefully acknowledge the financial support provided by Helmholtz-Zentrum Geesthacht for the synchrotron beam time at DESY, the Forschungs Neutronenquelle Heinz Maier-Leibnitz (FRM II) for the neutron beam time, as well as the Budapest Neutron Centre for the beam time at PGAA. The authors also acknowledge the contributions of OMI Optika Ltd. and Radosys Ltd. to the B mapping experiments by providing the track detectors. Two of the co-authors (PS, PB) acknowledge the support received through AVČR-DAAD PPP project No. CZ13-DE06/2012-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Mukherji.

Additional information

Manuscript submitted April 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherji, D., Rösler, J., Wehrs, J. et al. Application of In Situ Neutron and X-Ray Measurements at High Temperatures in the Development of Co-Re-Based Alloys for Gas Turbines. Metall Mater Trans A 44, 22–30 (2013). https://doi.org/10.1007/s11661-012-1363-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1363-6

Keywords

Navigation