Skip to main content

Advertisement

Log in

Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Permanent magnet development has historically been driven by the need to supply larger magnetic energy in ever smaller volumes for incorporation in an enormous variety of applications that include consumer products, transportation components, military hardware, and clean energy technologies such as wind turbine generators and hybrid vehicle regenerative motors. Since the 1960s, the so-called rare-earth “supermagnets,” composed of iron, cobalt, and rare-earth elements such as Nd, Pr, and Sm, have accounted for the majority of global sales of high-energy–product permanent magnets for advanced applications. In rare-earth magnets, the transition-metal components provide high magnetization, and the rare-earth components contribute a very large magnetocrystalline anisotropy that donates high resistance to demagnetization. However, at the end of 2009, geopolitical influences created a worldwide strategic shortage of rare-earth elements that may be addressed, among other actions, through the development of rare-earth-free magnetic materials harnessing sources of magnetic anisotropy other than that provided by the rare-earth components. Materials engineering at the micron scale, nanoscale, and Angstrom scales, accompanied by improvements in the understanding and characterization of nanoscale magnetic phenomena, is anticipated to result in new types of permanent magnetic materials with superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Chikazumi and C.D. Graham: Physics of Ferromagnetism, Oxford University Press, Oxford, U.K., 1997.

    Google Scholar 

  2. R.C. O’Handley: Modern Magnetic Materials: Principles and Applications, Wiley, New York, NY, 2000.

    Google Scholar 

  3. J.M.D. Coey: Magnetism and Magnetic Materials, Cambridge University Press, New York, NY, 2010.

    Book  Google Scholar 

  4. AIC, Flexible magnetic sheeting, http://www.flexible-magnet.com/page/en/Flexible_Magnetic_Sheeting.htm.

  5. J.D. Livingston: Driving Force, the Natural Magic of Magnets, Harvard University Press, Cambridge, MA, 1996.

    Google Scholar 

  6. J.M.D. Coey: Endeavor, 1995, vol. 19, p. 146–51.

    Article  CAS  Google Scholar 

  7. K. Hozelitz: Ferromagnetic Properties of Metals and Alloys, Clarendon Press, Oxford, U.K., 1952.

    Google Scholar 

  8. T. Mishima: Ohm, 1932, vol. 19, p. 353.

    Google Scholar 

  9. B.D. Cullity and C.D. Graham: Introduction to Magnetic Materials, Wiley, Hoboken, NJ, 2008.

    Book  Google Scholar 

  10. C. Kittel, E.A. Nesbitt, and W. Shockley: Phys. Rev., 1950, vol. 77, pp 839–40.

    Article  Google Scholar 

  11. K.H.J. Buschow and F. R. de Boer: Physics of Magnetism and Magnetic Materials, Springer, New York, NY, 2003.

  12. J.W. Cahn: J. Appl. Phys., 1963, vol. 34, pp. 3581–86.

    Article  Google Scholar 

  13. P. Marin and A. Hernando: Appl. Phys. Lett., 2009, vol. 94, pp. 122507-1–122507-3.

    Article  CAS  Google Scholar 

  14. L.I. Mendelsohn, F.E. Luborsky, and T.O. Paine: J. Appl. Phys., 1955, vol. 26, pp. 1274–80.

    Article  Google Scholar 

  15. F.E. Luborsky, L.I. Mendelsohn, and T.O. Paine: J. Appl. Phys., 1957, vol. 28, pp. 344–50.

    Article  CAS  Google Scholar 

  16. A.H. Geisler: Rev. Mod. Phys., 1953, vol. 25, pp. 316–22.

    Article  Google Scholar 

  17. F.E. Luborsky: J. Appl. Phys., 1966, vol. 37, pp. 1091–94.

    Article  CAS  Google Scholar 

  18. J. Went, G.W. Rathenau, E.W. Gorter, and G.W. van Oosterhout: Philips Tech. Rev., 1952, vol. 13, pp. 194–208.

    CAS  Google Scholar 

  19. J.B. Goodenough: Magnetism and the Chemical Bond, Interscience Publishers, New York, NY, 1963.

    Google Scholar 

  20. A. Mann: Nature, 2011, vol. 475, pp. 280–82.

    Article  CAS  Google Scholar 

  21. J. Heber: Nature, 2009, vol. 459, pp. 28–30.

    Article  CAS  Google Scholar 

  22. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger: Science, 2001, vol. 294, no. 5546, pp. 1488–95.

    Article  CAS  Google Scholar 

  23. V.G. Harris, A. Geilera, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, and C. Vittoria: J. Magn. Magn. Mater., 2009, vol. 321, no. 14, pp. 2035–47.

    Article  CAS  Google Scholar 

  24. K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J.J. Becker: J. Appl. Phys., 1967, vol. 38, pp. 1001–02.

    Article  CAS  Google Scholar 

  25. G. Hoffer and K. Strnat: IEEE Trans. Magn., 1966, vol. 2, pp. 487–89.

    Article  Google Scholar 

  26. K.J. Strnat: IEEE Trans. Magn., 1972, vol. 8, pp. 511–16.

    Article  CAS  Google Scholar 

  27. K.H.J. Buschow: Magnetism and Processing of Permanent Magnet Materials, Handbook of Magnetic Materials, vol. 10, K.H.J. Buschow, ed., Elsevier Science B.V., Atlanta, GA, 1997, pp. 463–593.

  28. J. Zhou, R. Skomski, C. Chen, G.C. Hadjipanayis, and D.J. Sellmyer: Appl. Phys. Lett., 2000, vol. 77, pp. 1514–16.

    Article  CAS  Google Scholar 

  29. Z.D. Zhang, W. Liu, J.P. Liu, and D.J. Sellmyer: J. Phys. D: Appl. Phys., 2000, vol. 33, pp. R217–R246.

    Article  CAS  Google Scholar 

  30. J.M.D. Coey: Rare-Earth-Iron Permanent Magnets,Proc. International School of Physics “Enrico Fermi” Course CVI, G.F. Chiarotti, F. Fumi, and M.P. Tosi, eds., Villa Marigola Italy, 1988 Current Trends in the Physics of Materials, North-Holland, Amsterdam, the Netherlands, 1990, pp. 265–313.

  31. F.J. Cadieu: Int. Mater. Rev., 1995, vol. 40, no. 4, pp.137–48.

    Article  CAS  Google Scholar 

  32. L.H. Lewis, V. Panchanathan, and J.Y. Wang: J. Magn. Magn. Mater., 1997, vol. 176, pp. 288–96.

    Article  CAS  Google Scholar 

  33. J.M.D. Coey and H. Sun: J. Magn. Magn. Mater., 1990, vol. 87, L251–54.

    Article  CAS  Google Scholar 

  34. Y. Otani, D.P. Hurley, H. Sun, and J.M.D. Coey: J. Appl. Phys., 1991, vol. 69, pp. 5584–89.

    Article  CAS  Google Scholar 

  35. S. Sugimoto: J. Phys. D: Appl. Phys., 2011, vol. 44, p. 064001.

    Article  CAS  Google Scholar 

  36. J. Ding, P.G. McCormick, and R. Street: Appl. Phys. Lett. 1992, vol. 61, pp. 2721–22.

    Article  CAS  Google Scholar 

  37. T. Saito, H. Sato, and H. Takeishi: Appl. Phys. Lett., 2006, vol. 89, pp. 162511–12.

    Article  CAS  Google Scholar 

  38. H.H. Stadelmaier, F.J. Cadieu, and N.C. Liu: Mater. Lett., 1987, vol. 6, pp. 80–81.

    Article  CAS  Google Scholar 

  39. H.S. Li, J.M. Cadogan, R.L. Davis, A. Margarian, and J.B. Dunlop: Solid State Commun., 1994, vol. 90, pp. 487–92.

    Article  CAS  Google Scholar 

  40. K.H. Buschow: J. Appl. Phys., 1988, vol. 63, pp. 3130–35.

    Article  CAS  Google Scholar 

  41. O. Kalogirou, V. Psycharis, L. Saettas, and D. Niarchos: J. Magn. Magn. Mater., 1995, vol. 146, pp. 335–45.

    Article  CAS  Google Scholar 

  42. K.V.S. Rama Rao, G. Markandeyulu, K.G. Suresh, V.R. Shah, U.V. Varadaraju, M. Venkatesan, M.Q. Huang, K. Sirisha, M.E. McHenry, and V.G. Harris: Bull. Mater. Sci., 1999, vol. 22, p. 509–17.

    Article  Google Scholar 

  43. J.M. Cadogan, H.S. Li, A. Margarian, J.B. Dunlop, D.H. Ryan, S.J. Collocott, and R.L. Davis: J. Appl. Phys., 1994, vol. 76, pp. 6138–43.

    Article  CAS  Google Scholar 

  44. A. Yan, O. Gutfleisch, A. Handstein, T. Gemming, and K.-H. Muller: J. Appl. Phys., 2003, vol. 93, pp. 7975–77.

    Article  CAS  Google Scholar 

  45. USGS Mineral resources program, http://minerals.usgs.gov/.

  46. United States Congressional Budget Office Special Study: Cobalt: Policy Options for a Strategic Mineral, 1982, O-98_700.

  47. J.J. Croat: U.S. Patent 4,496,395, 1985.

  48. Y. Matsuura, M. Sagawa, and S. Fujimura: U.S. Patent 4,597,938, 1986.

  49. N.C Koon: U.S. Patent 4,402,770, 1983.

  50. J.F. Herbst: Rev. Mod. Phys., 1991, vol. 63, pp. 819–98.

    Article  CAS  Google Scholar 

  51. R. Pond and R. Maddin: Trans. TMS-AIME, 1969, vol. 245, pp. 2475–76.

    CAS  Google Scholar 

  52. M.C. Narasimham: U.S. Patent 4212343, 1980.

  53. V. Panchanathan: J. Mater. Eng. Perf., 1995, vol. 4, no. 4, pp. 423–29.

    Article  CAS  Google Scholar 

  54. R.K. Mishra: J. Appl. Phys., 1987, vol. 62, pp. 967–71.

    Article  CAS  Google Scholar 

  55. D.B.-M. Ma and Z. Chen: J. Magn. Magn. Mater., 2002, vol. 248, pp. 432–40.

    Article  Google Scholar 

  56. Neo Material Technologies, http://www.magnequench.com/.

  57. Arnold Magnetic Technologies, http://www.arnoldmagnetics.com/.

  58. T. Folger: National Geographic Magazine, June, 2011, http://ngm.nationalgeographic.com/2011/06/rare-earth-elements/folger-text.

  59. K. Bourzac: MIT Technology Review, May/June 2011, http://www.technologyreview.com/energy/37344/.

  60. W.T. Benecki: A Producer’s and Buyer’s Perspective: The Permanent Magnet Outlook, Magnetics 2008 Conference, Denver, CO, 2008.

    Google Scholar 

  61. K. Bradsher: New York Times August 31, 2009, http://www.nytimes.com/2009/09/01/business/global/01minerals.html.

  62. H. Yuan: “China May Double Rare Earth Exports as Demand Rebounds,” Bloomberg News, Feb 27, 2012, http://www.bloomberg.com/news/2012-02-26/china-may-double-rare-earth-exports-as-overseas-demand-rebounds-on-price.html.

  63. USGS, Rare Earths Statistics and Information, http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/.

  64. Z. Chen: J. Rare Earths, 2011, vol. 29, no. 1, pp. 1–6.

    Article  Google Scholar 

  65. M. Humphries: Rare Earth Elements: The Global Supply Chain Congressional Research Service 7-5700,www.crs.gov R41347, 2011.

  66. G. Herzberg: Atomic Spectra and Atomic Structure, Dover Books on Physics, New York, NY, 2010.

    Google Scholar 

  67. R. Skomski: J. Phys.: Condens. Matter, 2003, vol. 15, pp. R841–R896.

    Article  CAS  Google Scholar 

  68. L. Steinbeck, M. Richter, U. Nitzsche, and H. Eschrig: Phys. Rev. B, 1996, vol. 53, pp. 7111–27.

    Article  CAS  Google Scholar 

  69. “Rare Earth Materials in the Defense Supply Chain,” U.S. United States Government Accountability Office Report GAO-10-617R, 2010.

  70. B. Jaffe and J. Price: Co-Chairs: Critical Elements for New Energy Technologies, An MIT Energy Initiative Workshop Report, 2010, co-sponsored by Massachusetts Institute of Technology’s Energy Initiative (MITEI), the American Physical Society’s (APS) Panel on Public Affairs (POPA) and the Materials Research Society (MRS).

  71. U.S. Department of Energy: “2011 Critical Materials Strategy,” December, 2011.

  72. K.A. Gschneidner, Jr.: Rare Earth Minerals and 21st Century Industry—Detailed Written Responses to Subcommittee’s Questions, March 16, 2011, Testimony to a subcommittee of the U.S. House Committee on Science and Technology, http://gop.science.house.gov/Media/hearings/oversight10/mar16/Gschneidner.pdf.

  73. J.M.D. Coey: Rare-Earth Iron Permanent Magnets, J.M.D. Coey, ed., Clarendon Press, Oxford, U.K., 1996.

  74. T.J. Nummy, S.P. Bennett, T. Cardinal. and D. Heiman: Appl. Phys. Lett., 2011, vol. 99, p. 252506.

    Article  CAS  Google Scholar 

  75. V.G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A.L. Geiler, J. Gao, C.N. Chinnasamy, L.H. Lewis, C. Vittoria, E.E. Carpenter, K.J. Carroll, R. Goswami, M.A. Willard, L. Kurihara, M. Gjoka, and O. Kalogirou: J. Phys. D: Appl. Phys., 2010, vol. 43, p. 165003.

    Article  CAS  Google Scholar 

  76. P. Gaunt: Phil. Mag. B, 1983, vol. 48, no. 3, pp. 261–76.

    Article  CAS  Google Scholar 

  77. J. Dubowik: Phys. Rev. B, 1996, vol. 54, pp. 1088–91.

    Article  CAS  Google Scholar 

  78. A.E. Berkowitz and K. Takano: J. Magn. Magn. Mater., 1999, vol. 200, pp. 552–70.

    Article  CAS  Google Scholar 

  79. C.-W. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, Dover Publications, New York, NY, 1986.

    Google Scholar 

  80. C. Kittel: Rev. Mod. Phys., 1949, vol. 21, no. 4, p. 541.

    Article  Google Scholar 

  81. C.T. Yang: National Geographic Magazine, March 2012, http://news.nationalgeographic.com/news/energy/2012/03/120330-china-rare-earth-minerals-energy/.

  82. E.F. Kneller and R. Hawig: IEEE Trans. Magn., 1991, vol. 27 pp. 3588–60.

    Article  CAS  Google Scholar 

  83. G. Herzer: Mater. Sci. Eng. A, 1991, vol. A133, pp. 1–5.

    CAS  Google Scholar 

  84. R. Skomski and J.M.D. Coey: Phys. Rev. B, 1993, vol. 48, pp. 15812–16.

    Article  CAS  Google Scholar 

  85. R. Coehoorn, D.B. Mooji, and C. DeWaard: J. Magn. Magn. Mater., 1989, vol. 80, pp. 101–04.

    Article  CAS  Google Scholar 

  86. G.C. Hadjipanayis: J. Magn. Magn. Mater., 1999, vol. 200, pp. 373–91.

    Article  CAS  Google Scholar 

  87. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, and S. Sun: Nature, 2002, vol. 420, pp. 395–98.

    Article  CAS  Google Scholar 

  88. X. Rui, Z. Sun, L. Yue, Y. Xu, D.J. Sellmyer, Z. Liu, D.J. Miller, and J.E. Shield: J. Magn. Magn. Mater., 2006, vol. 305, pp. 76–82.

    Article  CAS  Google Scholar 

  89. J.E. Shield, J. Zhou, S. Aich, V.K. Ravindran, R. Skomski, and D.J. Sellmyer: J .Appl. Phys., 2006, vol. 99, p. 08B508.

    Article  CAS  Google Scholar 

  90. L.H. Lewis, A.R. Moodenbaugh, D.O. Welch, and V. Panchanathan: J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 744–51.

    Article  CAS  Google Scholar 

  91. K. Raviprasad, M. Funakoshi, and M. Umemoto: J. Appl. Phys., 1998, vol. 83, pp. 921–29.

    Article  CAS  Google Scholar 

  92. S.K. Chen, J.L. Tsai, and T.S. Chin: J. Appl. Phys., 1996, vol. 79, pp. 5964–66.

    Article  CAS  Google Scholar 

  93. G. Sreenivasulu, R. Gopalan, V. Chandrasekaran, G. Markandeyulu, K.G. Suresh, and B.S. Murty: Nanotechnology, 2008, vol. 19, p. 335701.

    Article  CAS  Google Scholar 

  94. C.L. Harland, L.H. Lewis, Z. Chen, and B.-M. Ma: J. Magn. Magn. Mater., 2004, vol. 271, pp. 53–62.

    Article  CAS  Google Scholar 

  95. J.P. Liu, E. Fullerton, O. Gutfleisch, and D.J. Sellmyer: Nanoscale Magnetic Materials and Applications, Springer, New York, NY, 2009.

    Book  Google Scholar 

  96. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, nos. 1–2, pp. 1–184.

    Article  CAS  Google Scholar 

  97. W.H. Meiklejohn and C.P. Bean: Phys. Rev., 1956, vol. 102, pp. 1413–14.

    Article  Google Scholar 

  98. K.-W. Lin, R.J. Gambino, and L.H. Lewis: J. Appl. Phys., 2003, vol. 93, pp. 6590–92.

    Article  CAS  Google Scholar 

  99. F. Jiménez-Villacorta and C. Prieto: J. Phys.: Condens. Matter, 2008, vol. 20, p. 085216.

    Article  CAS  Google Scholar 

  100. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues: Nature, 2003, vol. 423, pp. 850–53.

    Article  CAS  Google Scholar 

  101. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Munoz, and M.D. Baro: Phys. Rep., 2005, vol. 422, pp. 65–117.

    Article  Google Scholar 

  102. J. Nogués and I. K. Schuller: J. Magn. Magn. Mater., 1999, vol. 192, pp. 203–32.

    Article  Google Scholar 

  103. H.C. Tong, C. Qian, L. Miloslavsky, S. Funada, X. Shi, F. Liu, and S. Dey: J. Magn. Magn. Mater., 2000, vol. 209 pp. 56–60.

    Article  CAS  Google Scholar 

  104. S.R. Mishra, I. Dubenko, J. Losby, S. Roy, N. Ali, and K. Marasinghe: IEEE Trans. Magn., 2004, vol. 40, pp. 2716–20.

    Article  CAS  Google Scholar 

  105. B.H. Miller and E.D. Dahlberg: J. Appl. Phys., 1997, vol. 81, p. 5002.

    Article  CAS  Google Scholar 

  106. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger: Science, 2001, vol. 294, pp. 1488–95.

    Article  CAS  Google Scholar 

  107. A. Inoue, T. Zhang, W. Zhang, and A. Takeuchi: Mater. Trans, JIM, 1996, vol. 37, pp. 99–108.

    CAS  Google Scholar 

  108. M.J. Kramer, A.S. O’Connor, K.W. Dennis, R.W. McCallum, L.H. Lewis, L.D. Tung, and N.P. Duong: IEEE Trans. Magn., 2001, vol. 37, no. 4, pp. 2497–99.

    Article  CAS  Google Scholar 

  109. R.W. McCallum, L.H. Lewis, M.J. Kramer, and K.W. Dennis: J. Magn. Magn. Mater., 2006, vol. 299, pp. 265–80.

    Article  CAS  Google Scholar 

  110. J. Sort, J. Nogués, X. Amils, S. Suriñach, J.S. Muñoz, and M.D. Baró: Appl. Phys. Lett., 1999, vol. 75, pp. 3177–79.

    Article  CAS  Google Scholar 

  111. J. Sort, S. Suriñach, J.S. Muñoz, M.D. Baró, J. Nogués, G. Chouteau, V. Skumryez, and G.C. Hadjipanayis: Phys. Rev. B, 2002, vol. 65, p. 174420.

    Article  CAS  Google Scholar 

  112. T.A. Anhøj, C.S. Jacobsen, and S. Mørup: J. Appl. Phys., 2004, vol. 95, pp. 3649–54.

    Article  CAS  Google Scholar 

  113. S.R. Mishra, I. Dubenko, J. Losby, S. Roy, N. Ali, and K. Marasinghe: IEEE Trans. Magn., 2004, vol. 40, pp. 2716–20.

    Article  CAS  Google Scholar 

  114. L.H. Lewis, C.L. Harland, R.W. McCallum, M.J. Kramer, and K.W. Dennis: J. Appl. Phys., 2006, vol. 99, p. 08E908.

    Article  CAS  Google Scholar 

  115. L.H. Lewis, C.L. Harland, R.W. McCallum, M.J. Kramer, and K.W. Dennis: unpublished research, 2005.

  116. F. Jiménez-Villacorta, J.L. Marion, and L.H. Lewis: unpublished research, 2012.

  117. P. Gibbs, T.M. Harden, and J.H. Smith: J. Phys. F: Met. Phys., 1985, vol. 15, pp. 213–23.

    Article  CAS  Google Scholar 

  118. G.E. Bacon, I.W. Dunmur, J.H. Smith, and R. Street: Proc. Roy. Soc. Lond., 1957, vol. A241, pp. 223–38.

  119. A. Banerjee and A.K. Majumdar: Phys. Rev. B, 1992, vol. 46, pp. 8958–73.

    Article  CAS  Google Scholar 

  120. M. Acet, C. John, and E.F. Wassermann: J. Appl. Phys., 1991, vol. 70, p. 6556–58.

    Article  CAS  Google Scholar 

  121. R. Bali, B.B. Nelson-Cheeseman, A. Scholl, E. Arenholtz, Y. Suzuki, and M.G. Blamire: J. Appl. Phys., 2009, vol. 106, p. 113925.

    Article  CAS  Google Scholar 

  122. K. Komagaki, K. Yamada, K. Noma, H. Kanai, K. Kobayashi, Y. Uehara, M. Tsunoda, and M. Takahashi: IEEE Trans. Magn., 2007, vol. 43, pp. 3535–37.

    Article  CAS  Google Scholar 

  123. L.E. Fernandez-Outon, K. O’Grady, S. Oh, M. Zhou, and M. Pakala: IEEE Trans. Magn., 2008, vol. 44, pp. 2824–27.

    Article  CAS  Google Scholar 

  124. F. Jiménez-Villacorta, J.L. Marion, T. Sepehrifar, and L.H. Lewis: J. Appl. Phys., 2012, vol. 111, p. 07E141.

    Article  CAS  Google Scholar 

  125. J.S. Kouvel: J. Phys. Chem. Solids, 1961, vol. 21, pp. 57–70.

    Article  CAS  Google Scholar 

  126. J.S. Kouvel: J. Appl. Phys., 1960, vol. 31, pp. 142S–147S.

    Article  CAS  Google Scholar 

  127. J. Ederth, A. Hoel, C.I. Johansson, L.B. Kiss, E. Olsson, C.G. Granqvist, and P. Nordblad: J. Appl. Phys., 1999, vol. 86, pp. 6571–75.

    Article  CAS  Google Scholar 

  128. T. Sato and K. Komatsu: J. Phys. D: Appl. Phys., 2010, vol. 43, p. 474003.

    Article  CAS  Google Scholar 

  129. J.M.D. Coey: J. Appl. Phys., 1994, vol. 76, pp. 6632–36.

    Article  CAS  Google Scholar 

  130. M.Q. Huang, W.E. Wallace, S. Simizu, A.T. Pedziwiatr, R.T. Obermyer, and S.G. Sankar: J. Appl. Phys., 1994, vol. 75, pp. 6574–76.

    Article  CAS  Google Scholar 

  131. M.Q. Huang, W.E. Wallace, S. Simizu, and S.G. Sankar: J. Magn. Magn. Mater., 1994, vol. 135, pp. 226–30.

    Article  CAS  Google Scholar 

  132. T.K. Kim and M. Takahashi: Appl. Phys. Lett., 1972, vol. 20, pp. 492–94.

    Article  CAS  Google Scholar 

  133. H. Takahashi, K. Mitsuoka, M. Komuro, and Y. Sugita: J. Appl. Phys., 1993, vol. 73, pp. 6060–62.

    Article  CAS  Google Scholar 

  134. K.H. Jack: Proc. Roy. Soc. Lond. A, 1951, vol. 208, pp. 200–15.

  135. K.H. Jack: Proc. R. Soc. Lond. A, 1951, vol. 208, pp. 216–24.

  136. Y. Sugita, H. Takahashi, M. Komuro, K. Mitsuoka, and A. Sakuma: 6th Joint MMM-Intermag Conf., Paper #EB-4, Albuquerque, NM, June 20–23, 1994.

  137. M. Takahashi and H. Shoji: J. Magn. Magn. Mater., 2000, vol. 208, pp. 145–57.

    Article  CAS  Google Scholar 

  138. Conference on Critical Materials for a Clean Energy Future, October 4–5, 2011, Workshops hosted by the U.S. Department of Energy, Washington, DC, http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf.

  139. Y.A. Izyumov and V.N. Syromyatnikov: Phase Transitions and Crystal Symmetry, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990, pp. 29–31.

    Book  Google Scholar 

  140. P. Ehrenfest: Verhandlingen der Koniklijke Akademi van Wetenschappen, 36, Supplement no. 75b. (Communications from the Physical Laboratory of the University of Leiden, Amsterdam, the Netherlands, 1933), pp. 153–57.

  141. J.B. Newkirk, R. Smoluchowski, A.H. Geisler, and D.L. Martin: Trans. AIME, 1950, vol. 188, pp. 1249–60.

    CAS  Google Scholar 

  142. F.N. Rhines and J.B. Newkirk: Trans. AIME, 1950, vol. 45, pp. 1029–55.

    Google Scholar 

  143. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, and W.A. Soffa: Scripta Metall., 1995, vol. 33, p. 1793.

    Article  CAS  Google Scholar 

  144. S. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser: Science, 2000, vol. 287, pp. 1989–92.

    Article  CAS  Google Scholar 

  145. S. Sun, E.E. Fullerton, D. Weller, and C.B. Murray: IEEE Trans. Magn., 2001, vol. 37, pp. 1239–43.

    Article  CAS  Google Scholar 

  146. D.J. Sellmyer, M. Yan, Y. Xu, and R. Skomski: IEEE Trans. Magn., 2005, vol. 41, pp. 560–65.

    Article  CAS  Google Scholar 

  147. J. Zhou, R. Skomski, X. Li, W. Tang, G.C. Hadjipanayis, and D.J. Sellmyer: IEEE Trans. Magn., 2001, vol. 38, pp. 2802–04.

    Article  CAS  Google Scholar 

  148. J.P. Liu, Y. Liu, R. Skomski, and D.J. Sellmyer: IEEE Trans. Magn., 1999, vol. 35, pp. 3241–46.

    Article  CAS  Google Scholar 

  149. C.-Y. Yang, D.B. Williams, and J.I. Goldstein: J. Phase Equil., 1996, vol. 17, no. 6, pp. 522–31.

    Article  CAS  Google Scholar 

  150. T. Shima, M. Okamura, S. Mitani, and K. Takanashi: J. Magn. Magn. Mater., 2007, vol. 310, pp. 2213–14.

    Article  CAS  Google Scholar 

  151. J. Danon, R. Scorzelli, I. Souza Azevedo, W. Curvello, J.F. Albertsen, and J.M. Knudsen: Nature, 1979, vol. 277, pp. 283–84.

    Article  CAS  Google Scholar 

  152. J.I. Goldstein, J.R. Michael, and P. Kotula: Microsc. Microanal., 2008, vol. 14, pp. 520–21.

    Article  Google Scholar 

  153. J. Paulevé and D. Dautreppe: Compte Rendus Acad. Sci., 1960, vol. 250, pp. 3804–06.

    Google Scholar 

  154. J. Paulevé, D. Dautreppe, J. Laugier, and L. Néel: Compte Rendus Acad. Sci., 1962, vol. 254, pp. 965–68.

    Google Scholar 

  155. L. Néel, J. Paulevé, R. Pauthenet, J. Laugier, and D. Dautreppe: J. Appl. Phys., 1964, vol. 35, pp. 873–76.

    Article  Google Scholar 

  156. N. Kurti: Selected Works of Louis Néel, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  157. T. Kojima, M. Mizuguchi, and K. Takanashi: J. Phys.: Conf. Ser., 2011, vol. 266, p. 012119.

    Article  CAS  Google Scholar 

  158. L. Ma, D.B. Williams, and J.I. Goldstein: J. Phase Equil., 1998, vol. 19, pp. 299–309.

    Article  CAS  Google Scholar 

  159. J. Zhang, D.B. Williams, and J.I. Goldstein: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1627–37.

    Article  CAS  Google Scholar 

  160. J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, N. Neveu, S.G. Kim, C.J. Choi, and J.G. Lee: J. Appl. Phys., 2010, vol. 107, p. 09A731.

    Article  CAS  Google Scholar 

  161. D.P. Hoydick, E.J. Palmiere, and W.A. Soffa: J. Appl. Phys., 1997, vol. 81, pp. 5624–26.

    Article  CAS  Google Scholar 

  162. K. Kamino, T. Kawaguchi, and M. Nagakura: IEEE Trans. Magn., 1966, vol. 2, pp. 506–10.

    Article  Google Scholar 

  163. Z.C. Yan, Y. Huang, Y. Zhang, G.C. Hadjipanayis, W. Soffa, and D. Weller: Scripta Mater., 2005, vol. 53, pp. 463–68.

    Article  CAS  Google Scholar 

  164. H. Kono: J. Phys. Soc. Jpn., 1958, vol. 13, pp. 1444–51.

    Article  CAS  Google Scholar 

  165. A.J.J. Koch, P. Hokkeling, M.G. Steeg, and K.J. de Vos: J. Appl. Phys., 1960, vol. 31, pp. 75S–77S.

    Article  CAS  Google Scholar 

  166. T. Ohtani, N. Kato, S. Kojima, K. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara, and T. Kubo: IEEE Trans. Magn., 1977, vol. 13, pp. 1328–30.

    Article  Google Scholar 

  167. Y.C. Yang, W.W. Ho, C. Lin, J.L. Yang, H.M. Zhou, J.X. Zhu, X.X. Zeng, B.S. Zhang, and L. Jin: J. Appl. Phys., 1984, vol. 55, pp. 2053–54.

    Article  CAS  Google Scholar 

  168. C. Yanar, J.M.K. Wiezorek, V. Radmilovic, and W.A. Soffa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2413–23.

    Article  CAS  Google Scholar 

  169. J.M.K. Wiezorek, A.K. Kulivitis, C. Yanar, and W.A. Soffa: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 594–604.

    Article  CAS  Google Scholar 

  170. X.J. Liu, R. Kainuma, H. Ohtani, and K. Ishida: J. Alloy. Compd., 1986, vol. 235, pp. 256–61.

    Article  Google Scholar 

  171. J.J. Van Den Broek, H. Donkersloot, G. Van Tendeloo, and J. Van Landuyt: Acta Metall., 1979, vol. 27, pp. 1497–1504.

    Article  Google Scholar 

  172. F. Jiménez-Villacorta, J.L. Marion, T. Sepehrifar, M. Daniil, M.A. Willard, and L.H. Lewis: Appl. Phys. Lett., 2012, vol. 100, p. 112408.

    Article  CAS  Google Scholar 

  173. R.A. McCurrie, J. Rickman, P. Dunk, and D.G. Hawkridge: IEEE Trans. Magn., 1978, vol. 14, pp. 682–84.

    Article  Google Scholar 

  174. E. Fazakas, L.K. Varga, and F. Mazaleyrat: J. Alloy. Compd., 2007, vols. 434–435, pp. 611–13.

  175. Q. Zeng, I. Baker, J.B. Cui, and Z.C. Yan: J. Magn. Magn. Mater., 2007, vol. 308, pp. 214–26.

    Article  CAS  Google Scholar 

  176. Q. Zeng, I. Baker, and Z. Yan: J. Appl. Phys., 2006, vol. 99, p. 08E902.

    Article  CAS  Google Scholar 

  177. Molycorp, http://www.molycorp.com.

  178. Y. Kido, N. Hoshi, A. Chiba, S. Ogasawara, and M. Takemoto: Proc. of the 2011–14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, U.K., 2011, pp. 1–10.

Download references

Acknowledgments

This work has been supported in part by ONR Grant # N00014-10-1-0553, by the U.S. Department of Energy’s Advanced Research Project Agency - Energy (ARPA-E) Award# DE-AR0000186, by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant DE-SC000525, and by Northeastern University. Special thanks are due to S. Constantinides (Arnold Magnetic Technologies Corporation), Prof. K. Barmak (Columbia University), and Prof. J. Shield (University of Nebraska–Lincoln) for assistance and consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura H. Lewis.

Additional information

Manuscript submitted March 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, L.H., Jiménez-Villacorta, F. Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation. Metall Mater Trans A 44 (Suppl 1), 2–20 (2013). https://doi.org/10.1007/s11661-012-1278-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1278-2

Keywords

Navigation