Skip to main content
Log in

Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A multiscale methodology was developed to predict the evolution of thermal conductivity of polycrystalline fuel under irradiation. At the mesoscale level, a phase field model was used to predict the evolution of gas bubble microstructure. Generation of gas atoms and vacancies was taken into consideration. Gas bubbles were predicted to form, grow, and coalesce around grain boundary (GB) areas. On the macroscopic scale, a statistical continuum mechanics model was applied to predict the anisotropic thermal conductivity evolution during irradiation. Microstructures predicted by the phase field model were fed into the statistical continuum mechanics model to predict properties and behavior. A decrease of thermal conductivity during irradiation was demonstrated. The influence of irradiation flux, the exposure time, and the grain microstructure were investigated. If the initial GB microstructure was isotropic, the thermal conductivity under irradiation would be similarly isotropic. If the initial GB configuration was anisotropic, anisotropy of thermal conductivity would intensify under irradiation as gas bubbles coalesce around GB areas. The prediction of microstructure and property evolution of polycrystalline materials under irradiation by bridging two models in different scales were demonstrated successfully. This approach provides a deep understanding from a basic scientific viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Abu-Khader: Prog. Nucl. Energy, 2009, vol. 51 (2), pp. 225–35.

    Article  Google Scholar 

  2. C. Greenhalgh and A. Azapagic: Environ. Sci. Policy, 2009, vol. 12 (7), pp. 1052–67.

    Article  Google Scholar 

  3. K.A. Rogers: Prog. Nucl. Energy, 2009, vol. 51 (2), pp. 281–89.

    Article  Google Scholar 

  4. C. Ronchi: J. Phys.: Condensed Matter, 1994, vol. 6, pp. L561–67.

  5. M. Gavrillas, P. Hezielar, N.E. Todreas, and Y. Shatilla: Safety Features of Operating Light Water Reactors of Western, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  6. D. Petti, D. Crawford, and N. Chauvin: MRS Bull., 2009, vol. 34 (1), pp. 40–45.

    Article  CAS  Google Scholar 

  7. W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, and E. Vernaz: MRS Bull., 2009, vol. 34 (1), pp. 46–53.

    Article  CAS  Google Scholar 

  8. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, and S. Ukai: MRS Bull., 2009, vol. 34 (1), pp. 20–27.

    Article  CAS  Google Scholar 

  9. C. Ronchi: High Temp., 2007, vol. 45 (4), pp. 552–71.

    Article  CAS  Google Scholar 

  10. C.B. Basak, A.K. Sengupta, and H.S. Kamath: J. Alloys Compd., 2003, vol. 360 (1–2), pp. 210–16.

    Article  CAS  Google Scholar 

  11. J.K. Fink: J. Nucl. Mater., 2000, vol. 279 (1), pp. 1–18.

    Article  CAS  Google Scholar 

  12. D.S. Li, H. Garmestani, and J. Schwartz: J. Nucl. Mater., 2009, vol. 392 (1), pp. 22–27.

    Article  CAS  Google Scholar 

  13. S.Y. Hu, C.H. Henager, H.L. Heinisch, M. Stan, M.I. Baskes, and S.M. Valone: J. Nucl. Mater., 2009, vol. 392 (2), pp. 292–300.

    Article  CAS  Google Scholar 

  14. D.S. Li, M. Khaleel, X. Sun, and H. Garmestani: Computat. Mater. Sci., 2010, vol. 48 (1), pp. 133–39.

    Article  CAS  Google Scholar 

  15. S.Y. Hu, Y.L. Li, X. Sun, F. Gao, R. Devanathan, C.H. Henager, and M.A. Khaleel: Int. J. Mater. Res., 2010, vol. 101 (4), pp. 515–22.

    Article  CAS  Google Scholar 

  16. R.L. Mills, D.H. Liebenberg, and J.C. Bronson: Phys. Rev. B, 1980, vol. 21 (11), pp. 5137–48.

    Article  CAS  Google Scholar 

  17. L.L. Bonilla, A. Carpio, J.C. Neu, and W.G. Wolfer: Phys. D-Nonlinear Phenomena, 2006, vol. 222 (1–2), pp. 131–40.

    Article  CAS  Google Scholar 

  18. L.Q. Chen and J. Shen: Comput. Phys. Comm., 1998, vol. 108 (2–3), pp. 147–58.

    Article  CAS  Google Scholar 

  19. F. Gao, H.L. Heinisch, and R.J. Kurtz: J. Nucl. Mater., 2009, vol. 386, pp. 390–94.

    Article  Google Scholar 

  20. T. Sonoda, M. Kinoshita, I.L.F. Ray, T. Wiss, H. Thiele, D. Pellottiero, V.V. Rondinella, and H. Matzke: Nucl. Instrum. Meth. Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 2002, vol. 191, pp. 622–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the United States Department of Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in the Pacific Northwest National Laboratory operated by Battelle Memorial Institute for the United States Department of Energy under Contract No. DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Li.

Additional information

Manuscript submitted March 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Li, Y., Hu, S. et al. Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach. Metall Mater Trans A 43, 1060–1069 (2012). https://doi.org/10.1007/s11661-011-0936-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0936-0

Keywords

Navigation