Skip to main content
Log in

Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.M. Pollock: Science, 2010, vol. 328, pp. 986-87.

    Article  CAS  Google Scholar 

  2. M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S.J. Smith, A. Janetos, and J. Edmonds: Science, 2009, vol. 324, pp. 1183-86.

    Article  CAS  Google Scholar 

  3. L.R. Kump: Nature, 2002, vol. 419, pp 188-90.

    Article  CAS  Google Scholar 

  4. J.A. Patz, D. Campbell-Lendrum, T. Holloway, and J.A. Foley: Nature, 2005, vol. 438, pp. 310-17.

    Article  CAS  Google Scholar 

  5. E.A. Nyberg, A.A. Luo, K. Sadayappan, and W.F. Shi: Adv. Mater. Process., 2008, vol. 166, pp. 35-37.

    CAS  Google Scholar 

  6. S.R. Agnew: JOM, 2004, vol. 56, pp. 20-21.

    Article  CAS  Google Scholar 

  7. E.S. Ng and I.A. Watson: J. Laser Appl., 1999, vol. 11, pp. 273-78.

    Article  CAS  Google Scholar 

  8. P.S. Mohanty and J. Mazumder: Metall. Mater. Trans. A, 1998, vol. 45A, 1269-79.

    Google Scholar 

  9. S. Kou and Y. Le: Metall. Trans. A, 1985, vol. 16A, pp. 1887-96.

    CAS  Google Scholar 

  10. M. Rappaz, J.M. Vitek, S.A. David, and L.A. Boatner: Metall. Trans. A, 1993, vol. 24A, pp. 1433-46.

    CAS  Google Scholar 

  11. K. Somboonsuk, J.T. Mason, and R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 967-75.

    CAS  Google Scholar 

  12. S.H. Wu, J.C. Huang, and Y.N. Wang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2455-69.

    Article  CAS  Google Scholar 

  13. Y. Liu, J. Koch, J. Mazumder, and K. Shibata: Metall. Trans. B, 1994, vol. 25B, pp. 425-34.

    CAS  Google Scholar 

  14. Q. Yajie, Z. Chen, Z. Yu, X. Gong, and M. Li: Mater. Charact., 2008, vol. 59, pp. 1799-804.

    Article  Google Scholar 

  15. L. Yu, K. Nakata, N, Yamamoto, and J. Liao: Mater. Lett., 2009, vol. 63, 870-72.

    Article  CAS  Google Scholar 

  16. Z.H. Yu, H.G. Yan, X.S. Gong, Y.J. Quan, J.H. Chen, and Q. Chen: Mater. Sci. Eng. A, 2009, vol. A523, pp. 220-25.

    CAS  Google Scholar 

  17. A. Weisheit, R. Galun, and B.L. Mordike: Weld. J., 1998, vol. 77, pp. 149-54.

    Google Scholar 

  18. H. Zhao and T. DebRoy: Weld. J., 2001, vol. 80, pp. 204-10.

    Google Scholar 

  19. Z. Sun, D. Pan, and J. Wei: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 343-51.

    Article  CAS  Google Scholar 

  20. G. Padmanaban and V. Balasubramanian: Mater. Des., 2010, vol. 31, pp. 3724-32.

    Article  CAS  Google Scholar 

  21. H. Sun, G. Song, and L.F. Zhang: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 305-11.

    Article  CAS  Google Scholar 

  22. S. Katayama, H. Nagayama, M. Mizutani, and Y. Kawahito: J. Light Met. Weld. Construct., 2008, vol. 46, pp. 470-79.

    CAS  Google Scholar 

  23. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C.J. Kong: Mater. Des., 2007, vol. 28, pp. 1231-37.

    Article  CAS  Google Scholar 

  24. J. Liu, J.H. Dong, and K. Shinozaki: Mater. Sci. Forum, 2009, vols. 610-3, pp. 911-14.

    Article  Google Scholar 

  25. L. Yu, K. Nakata, and J. Liao: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 554-58.

    Article  CAS  Google Scholar 

  26. G.F. Vander Voort: Metallography Principles and Practice, ASM International, Materials Park, OH, 1999.

    Google Scholar 

  27. ASTM Standard E8/E8M: 2008, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohohocken, PA, 2008.

  28. American Welding Society, Welding Handbook, 7th ed., vol. 1, American Welding Society, Miami, FL, 1976.

  29. X.Z. Lin and D.L. Chen: J. Mater. Eng. Perform., 2008, vol. 17, pp. 894–901.

    Article  CAS  Google Scholar 

  30. W.F. Savage, C.D. Lundin, and A.H. Aronson: Weld. J.,1965, vol. 44, pp. 175-81.

    Google Scholar 

  31. L. Xiao, L. Liu, Y. Zhou, and S. Esmaeili: Metall. Mater. Trans. A, 2010, vol. 41A, 1511-22.

    Article  CAS  Google Scholar 

  32. L. Liu, L. Xiao, J.C. Feng, Y.H. Tian, S.Q. Zhou, and Y. Zhou: Metall. Mater. Trans. A, in press.

  33. A. Munitz: Metall. Trans. B, 1985, vol. 16B, pp. 149-61.

    Article  CAS  Google Scholar 

  34. A.J. Paul and T. Debroy: Rev. Mod. Phys., 1995, vol. 67, pp. 85-112.

    Article  Google Scholar 

  35. S. Kou and Y. Le: Metall. Trans. A, 1982, vol. 13A, pp. 1141-52.

    Google Scholar 

  36. T.S. Plaskett and W.C. Winegard: Can. J. Appl. Physiol., 1960, vol. 38, 1077-88.

    CAS  Google Scholar 

  37. S. Kou: Welding Metallurgy, 2nd ed., Wiley, New York, NY, 2003.

    Google Scholar 

  38. Y. Kawahito, M. Mizutani, and S. Katayama: Trans. JWRI., 2007, vol. 36, pp. 11-16.

    CAS  Google Scholar 

  39. L.M. Liu, G. Song, and M.L. Zhu: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1702-11.

    Article  CAS  Google Scholar 

  40. P. Liu, Y.J. Li, H.R. Geng, and J.A. Wang: Mater. Lett., 2007, vol. 61, pp.1288-91.

    Article  CAS  Google Scholar 

  41. S.F. Su, J.C. Huang, H.K. Lin, and N.J. Ho: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1461-73.

    Article  CAS  Google Scholar 

  42. G. Padmanaban, V. Balasubramanian, and J.K. Sarin Sundar: JMPEG, 2010, vol. 19, no. 2, pp. 155-65.

    Article  CAS  Google Scholar 

  43. S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman, and Y. Zhou: Mater. Sci. Eng. A, 2010, vol. A527, pp. 2951-61.

    CAS  Google Scholar 

  44. J.A. del Valle and O.A. Ruano: Scripta Mater., 2006, vol. 55, pp. 775-78.

    Article  CAS  Google Scholar 

  45. Y.V.R.K. Prasad and R.W. Armstrong: Phil. Mag., 1974, vol. 29, pp. 1421-25.

    Article  CAS  Google Scholar 

  46. H. Takuda, S. Kikuchi, N. Yoshida, and H. Okahara: Metall. Mater. Trans. A, 2003, vol. 44A, pp. 2266-70.

    Google Scholar 

  47. Y.M. Wang and E. Ma: Mater. Sci. Eng. A, 2004, vol. A375-A377, pp. 46-52.

    Google Scholar 

  48. J. Luo, Z. Mei, W. Tian, and Z. Wang: Mater. Sci. Eng. A, 2006, vol. A441, pp. 282-90.

    CAS  Google Scholar 

  49. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi: Scripta Mater., 2007, vol. 57, pp. 1004-07.

    Article  CAS  Google Scholar 

  50. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268-89.

    Google Scholar 

  51. J.A. del Valle, F. Carreno, and O.A. Ruano: Acta Mater., 2006, vol. 54, pp. 4247-59.

    Article  CAS  Google Scholar 

  52. C.W. Sinclair, W.J. Poole, and Y. Brechet: Scripta Mater., 2006, vol. 55, pp. 739-42.

    Article  CAS  Google Scholar 

  53. W. Pantleon: Mater. Sci. Eng. A, 2004, vols. A387–A389, pp. 257-61.

    Google Scholar 

  54. I. Kovacs, N.Q. Chinh, and E. Kovacs-Csetenyi: Phys. Status Solidi A, 2002, vol. 194, pp. 3-18.

    Article  CAS  Google Scholar 

  55. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171-273.

    Article  CAS  Google Scholar 

  56. G.E. Dieter: Mechanical Metallurgy, S.I. Metric, ed., McGraw-Hill Columbus, OH, 1988.

  57. K.S. Chan, P. Yi-Ming, D. Davidson, and R.C. McClung: Mater. Sci. Eng. A, 1997, vol. A222, pp. 1-8.

    CAS  Google Scholar 

  58. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3014-26.

    Article  CAS  Google Scholar 

  59. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 688-95.

    Article  CAS  Google Scholar 

  60. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plast., 2007, vol. 23, pp. 44-86.

    Article  CAS  Google Scholar 

  61. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Int. J. Fatigue, 2009, vol. 31, pp. 726-35.

    Article  CAS  Google Scholar 

  62. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Mater. Sci. Eng. A, 2009, vol. A517, nos. 1-2, pp. 334-43.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial support. This investigation involves part of Canada-China-USA Collaborative Research Project on the Magnesium Front End Research and Development (MFERD). The authors also thank the General Motors Research and Development Center for the supply of test materials, and IPG Photonics Applications Lab, Novi, MI for making and supplying the fiber laser-welded joints. One author (D.L. Chen) is grateful for the financial support by the Premier’s Research Excellence Award (PREA), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The assistance of Q. Li, A. Machin, J. Amankrah, D. Ostrom, and R. Churaman (Ryerson University) in performing the experiments is acknowledged gratefully. The authors also thank Dr. X. Cao, Dr. S. Xu, Dr. K. Sadayappan, Dr. J. Jackman, Professor N. Atalla, Professor S. Lambert, Professor H. Jahed, Professor Y.S. Yang, Professor M.F. Horstemeyer, Professor B. Jordon, Dr. A.A. Luo, Mr. R. Osborne, Mr. J.F. Quinn, Dr. J. Allison, Dr. X.M. Su, and Mr. L. Zhang for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Chen.

Additional information

Manuscript submitted August 2, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, S.M., Chen, D.L., Bhole, S.D. et al. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy. Metall Mater Trans A 42, 1974–1989 (2011). https://doi.org/10.1007/s11661-010-0574-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0574-y

Keywords

Navigation