Skip to main content
Log in

A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System

  • Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strengthening and embrittlement are controlled by the interactions between dislocations and hydrogen (H)–induced defect structures that can inversely affect the deformation mechanisms in materials. Here we present a simulation framework to understand fundamental issues associated with H-assisted dislocation nucleation and mobility using Monte Carlo (MC) and molecular dynamics (MD). In order to study the interaction between H and dislocations and its effect on material failure, we extensively examined mode I loading of an edge crack using MD simulations. The MD calculations of the total structural energy in the nickel (Ni)–H system shows that H atoms prefer to occupy octahedral interstitial sites in the fcc Ni lattice. As H concentration is increased, the Young’s modulus and the energy required to create free surface decreased, resulting in H-enhanced localized plasticity. The MD simulations also indicate that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility, leading to softening of the material ahead of the crack tip. While the decrease in surface energy suggests H embrittlement, the increase in local plasticity induces crack blunting and prohibits crack propagation. The mechanisms responsible for transitioning from a ductile to brittle crack behavior clearly depend on the H concentration and its proximity to the crack tip. Enhanced plasticity will occur within a general field of H atoms that results in lower stacking fault and surface energies, yet H interstitials on preferential slip planes can inhibit dislocation nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.P. Lynch: Scripta Metall., 1979, vol. 13, pp. 1051–56.

    Article  CAS  Google Scholar 

  2. S.P. Lynch: J. Mater. Sci., 1986, vol. 21, pp. 692–704

    Article  CAS  Google Scholar 

  3. H. Vehoff and W. Rothe: Acta Metall., 1983, vol. 31, pp. 1781–93.

    Article  CAS  Google Scholar 

  4. H. Vehoff and H.K. Klameth: Acta Metall., 1985, vol. 33, pp. 955–62

    Article  CAS  Google Scholar 

  5. J.W. Davenport and P.H. Estrup: in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, D.A. King and D.P. Woodruff, eds., Elsevier, Amsterdam, 1990, vol. 3 (1), pp. 1–37.

  6. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  7. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A–Struct., 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  8. P. Sofronis, Y. Liang, and N. Aravas: Eur. J. Mech. A/Solids, 2001, vol. 20, pp. 857–72.

    Article  Google Scholar 

  9. Y. Liang and P. Sofronis: J. Mech. Phys. Solids, 2003, vol. 51 (8), pp. 1509–31.

    Article  CAS  Google Scholar 

  10. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92.

    Article  Google Scholar 

  11. I.M. Robertson and H.K. Birnbaum: Acta Metall., 1986, vol. 34, pp. 353–66.

    Article  CAS  Google Scholar 

  12. I.L. Kwon and R.J. Asaro: Acta Metall. Mater., 1980, vol. 38 (8), pp. 1595–1606.

    Google Scholar 

  13. D.S. Shih, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 111–24.

    Article  CAS  Google Scholar 

  14. P. Sofronis and H.K. Birnbaum: J. Mech. Phys. Solids, 1995, vol. 43, pp. 49–90.

    Article  Google Scholar 

  15. Y. Liang, P. Sofronis, and N. Aravas: Acta Mater., 2003, vol. 51, pp. 2717–30.

    Article  CAS  Google Scholar 

  16. Y. Liang, P. Sofronis, and R. Dodds: Mater. Sci. Eng. A, 2004, vol. 366 (2), pp. 397–411.

    Article  Google Scholar 

  17. H. Kimura and H. Matsui: Proc. 3rd Int. Conf. on Effect of Hydrogen on Behavior of Materials, TMS-AIME, Warrendale, PA, 1980, pp. 191–208.

    Google Scholar 

  18. K.S. Shin, C.G. Park, and M. Meshii: Proc. 3rd Int. Conf. on Effect of Hydrogen on Behavior of Materials, TMS-AIME, Warrendale, PA, 1980, pp. 209–18.

    Google Scholar 

  19. P. Sofronis and J. Lufrano: Mater. Sci. Eng. A, 1999, vol. 260 (1), pp. 41–47(7)

  20. J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1996, vol. 44 (2), pp. 179–205.

    Article  CAS  Google Scholar 

  21. T. Tabata and H.K. Birnbaum: Scripta Metall., 1983, vol. 17, pp. 947–50.

    Article  CAS  Google Scholar 

  22. T. Tabata and H.K. Birnbaum: Scripta Metall., 1984, vol. 18, pp. 231–36.

    Article  CAS  Google Scholar 

  23. Y. Liang and P. Sofronis: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 523–51.

    Article  CAS  Google Scholar 

  24. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–96.

    Article  CAS  Google Scholar 

  25. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 2193–97.

    Article  CAS  Google Scholar 

  26. P. Rozenak, I.M. Robertson, and H.K. Birnbaum: Acta Metall. Mater., 1990, vol. 38, pp. 2031–40.

    Article  CAS  Google Scholar 

  27. A. Kimura and H.K. Birnbaum: Acta Metall., 1988, vol. 36 (3), pp. 757–66.

    Article  CAS  Google Scholar 

  28. M.R. Louthan, G.R. Caskey, Jr., J.A. Donovan, Jr., and D.E. Rawl, Jr.: Mater. Sci. Eng., ASM, Metals Park, OH, 1972, vol. 10 (6), pp. 357–68.

  29. R.A. Oriani: Acta Metall., 1970, vol. 18 (1), pp. 147–57.

    Article  CAS  Google Scholar 

  30. R.A. Oriani and P.H. Josephic: Acta Metall., 1979, vol. 27 (6), pp. 997–1005.

    Article  CAS  Google Scholar 

  31. T.D. Lee, T. Goldenberg, and J.P. Hirth: Metall. Trans. A, 1979, vol. 10A, pp. 199–208.

    CAS  Google Scholar 

  32. A.W. Thompson: Scripta Metall., 1982, vol. 16 (10), pp. 1189–92.

    Article  CAS  Google Scholar 

  33. C.P. You, A.W. Thompson, and I.M. Bernstein: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 407–15.

    Article  CAS  Google Scholar 

  34. D.J. Bammann, P. Sofronis, and P. Novak: 2005 Proc. Int. Conf. on Fracture, Turin, Italy, 2005, p. 577.

    Google Scholar 

  35. A. Ramasubramaniam, M. Itakura, and E.A. Carter: Phys. Rev. B, 2009, vol. 79, p. 174101

    Article  Google Scholar 

  36. X. Xu, M. Wen, Z. Hu, S. Fukuyama, and K. Yokogawa: Comput. Mater. Sci., 2003, vol. 23, pp. 131–38.

    Article  Google Scholar 

  37. M.Q. Chandler, M.F. Horstemeyer, M.I. Baskes, P.M. Gullett, G.J. Wagner, and B. Jelinek: Acta Mater., 2008, vol. 56, pp. 95–104

    Article  CAS  Google Scholar 

  38. M.Q. Chandler, M.F. Horstemeyer, M.I. Baskes, G.J. Wanger, P.M. Gullett, and B. Jelinek: Acta Mater., 2008, vol. 56, pp. 619–31

    Article  CAS  Google Scholar 

  39. V.V. Bulatov and E. Kaxiras: Phys. Rev. Lett., 1997, vol. 78, pp. 4221–24.

    Article  CAS  Google Scholar 

  40. K.N. Solanki, M.F. Horstemeyer, M.I. Baskes, and H. Fang: Mech. Mater., 2005, vol. 37 (2–3), pp. 317–30.

    Article  Google Scholar 

  41. M.F. Horstemeyer, M.I. Baskes, V.C. Prantil, J. Philliber, and S. Vonderheide: Model. Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 265–86.

    Article  CAS  Google Scholar 

  42. S. Plimpton: J. Comp. Phys., 1995, vol. 117, pp. 1–19.

    Article  CAS  Google Scholar 

  43. M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285–88.

    Article  CAS  Google Scholar 

  44. S.M. Foiles, M.S. Daw, and W.D. Wilson: TMS-AIME, 1984, p. 275.

  45. J.E. Angelo, N.R. Moody, and M.I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.

    Article  CAS  Google Scholar 

  46. G.W. Hoover: Phys. Rev. A, 1985, vol. 31, pp. 1695–97.

    Article  Google Scholar 

  47. G.W. Hoover: Phys. Rev. A, 1986, vol. 34, pp. 2499–500.

    Article  Google Scholar 

  48. L. Verlet: Phys. Rev., 1967, vol. 159, pp. 98–103.

    Article  CAS  Google Scholar 

  49. S.C. Chang and J.P. Hirth: Metall. Trans. A, 1985, vol. 26A, pp. 1417–25.

    Google Scholar 

  50. H. Fang, M.F. Horstemeyer, M.I. Baskes, and K.N. Solanki: Comput. Meth. Appl. Mech. Eng., 2004, vol. 193 (17–20), pp. 1789–1802.

    Article  Google Scholar 

  51. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater., 2001, vol. 49, pp. 2713–22.

    Article  CAS  Google Scholar 

  52. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nat. Mater., 2002, vol. 1, p. 45.

    Article  CAS  Google Scholar 

  53. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2003, vol. 51, pp. 4135–47.

    Article  CAS  Google Scholar 

  54. C.L. Kelchner, S. Plimpton, J. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085–88.

    Article  CAS  Google Scholar 

  55. J.R. Rice: J. Mech. Phys. Solids, 1978, vol. 26, pp. 61–78.

    Article  CAS  Google Scholar 

  56. D.K. Ward, W.A. Curtin, and Y. Qi: Comp. Sci. Technol., 2006, vol. 66, pp. 1151–61.

    Article  CAS  Google Scholar 

  57. M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors recognize Dr. A.K. Vasudevan, Office of Naval Research, for providing his insights and valuable suggestions. This material is based upon the work supported by the Department of Energy and the National Energy Technology Laboratory under Award No. DE-FC26-02OR22910 and the Office of Naval Research under Contract No. N00014-09-1-0661. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Such support does not constitute an endorsement by the Department of Energy of the work or the views expressed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Solanki.

Additional information

Manuscript submitted February 19, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, K.N., Ward, D.K. & Bammann, D.J. A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System. Metall Mater Trans A 42, 340–347 (2011). https://doi.org/10.1007/s11661-010-0451-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0451-8

Keywords

Navigation