Skip to main content
Log in

Effect of Strain Rate on Evolution of the Deformation Microstructure and Texture in Polycrystalline Copper and Nickel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 × 10−4 to ~2.0 × 10+3 s−1 show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weaker \( \left\langle {101} \right\rangle \) texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end \( \left\langle {101} \right\rangle \) component over large strain rates (from 3 × 10−4 to 10+2 s−1) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 × 10+3 s−1, the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the \( \left\langle {101} \right\rangle \) component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U.F. Kocks, C.N. Tome, and H.R. Wenk: Texture and Anisotropy, Cambridge University Press, London, UK, 1998.

    MATH  Google Scholar 

  2. S. Speziale, I. Lonardelli, L.Miyagi, J. Pehl, C.E. Tommaseo, and H.-R. Wenk: J. Phys. Cond. Matter, 2006, vol. 18, pp. S1007–20.

    Article  CAS  ADS  Google Scholar 

  3. B. Plunkett, O. Cazacu, and R.A. Lebensohn: J. Phys. IV Proc., 2006, vol. 134, pp. 81–86.

    Article  CAS  Google Scholar 

  4. M.A. Meyers: Dynamic Behaviour of Materials, Wiley, New York, NY, 1994.

    Book  Google Scholar 

  5. R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923–53.

    Article  CAS  Google Scholar 

  6. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–69.

    Article  CAS  ADS  Google Scholar 

  7. T. Leffers: Scripta Metall., 1968, vol. 2, pp. 447–52.

    Article  CAS  Google Scholar 

  8. T. Leffers and O.B. Pederson: Scripta Mater., 2002, vol. 46, pp. 741–46.

    Article  CAS  Google Scholar 

  9. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  10. G.R. Canova, C. Fressengeas, A. Molinari, and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 1961–70.

    Article  Google Scholar 

  11. J.W. Hutchinson: Proc. R. Soc., 1976, vol. A348, pp. 101–27.

    ADS  Google Scholar 

  12. A. Bhattacharyya, D. Rittel, and G. Ravichandran: Scripta Mater., 2005, vol. 52, pp. 657–61.

    Article  CAS  Google Scholar 

  13. A. Bhattacharyya, D. Rittel, and G. Ravichandran: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1137–45.

    Article  CAS  ADS  Google Scholar 

  14. A.T. English and G.Y. Chin: Acta Metall., 1965, vol. 13, pp. 1013–16.

    Article  CAS  Google Scholar 

  15. M.G. Stout, J.S. Kallend, U.F. Kocks, M.A. Przystupa, and A.D. Rollett: Proc. Eighth Conf. on Texture of Materials, 1988, vol. 5.9, pp. 479–84.

  16. J. Hirsch and K. Lucke: Acta Metall., 1988, vol. 36, no. 76–1-3, pp. 2863–2927.

  17. D.A. Hughes, R. Lebensohn, H.R. Wenk, and A. Kumar: Proc. R. Soc. Lond. A, 2000, vol. 456, pp. 921–53.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  18. S. Suwas, R.K. Ray, J.J. Fundenberger, T. Grosdidien, and W. Skrotzki: Solid State Phenom., 2005, vol. 105, pp. 345–50.

    Article  CAS  Google Scholar 

  19. R.K. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861–72.

    Article  CAS  Google Scholar 

  20. ASM International: High Strain Rate Compression Testing, Mechanical Testing, vol 8, ASM Handbook, ASM International, Materials Park, OH, 1985, pp. 190–207.

    Google Scholar 

  21. T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298–310.

    Article  Google Scholar 

  22. G. Ribárik, T. Ungár, and J. Gubicza: J. Appl. Cryst., 2001, vol. 34, pp. 669–76.

    Article  Google Scholar 

  23. F. Montheillet and J. Le Coze: Phys. Stat. Sol. A, 2002, vol. 189, pp. 51–58.

    Article  CAS  ADS  Google Scholar 

  24. W. Skrotzki, N. Scheerbaum, C. Oertel, R.A. Massion, S. Suwas, and L.S. Toth: Acta Mater., 2007, vol. 55, pp. 2013–24.

    Article  CAS  Google Scholar 

  25. M.A. Meyers, V. Nesterenko, J. LaSalvia, and Q. Xue: Mater. Sci. Engg. A, 2001, vol. 317, pp. 204–25.

    Article  Google Scholar 

  26. M.A. Meyers, Y. Xu, Q. Xue, M. Perez-Prado, and T. McNelly: Acta Mat., 2003, vol. 51, pp. 1307–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the X-ray equipment support from the national facility (DST-IRPHA) at I.I.T. Bombay. Thanks are due to Professor I. Samajdar for providing this facility. The authors are also thankful to Dr. D.-I. Kim (KIST, Seoul) and to Professor K.H. Oh (SNU, Seoul) for providing the REDS software. The authors thank Mr. S. Sasidhara for help in carrying out the compression tests using DARTEC. The authors thank DST for the microscopy facility at the Institute of Nano Science Initiative in Indian Institute of Science, Bangalore. The authors are grateful to Professors G. Ravichandran and R.K. Ray for discussion on various aspects of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Additional information

Manuscript submitted August 12, 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurao, N.P., Kapoor, R. & Suwas, S. Effect of Strain Rate on Evolution of the Deformation Microstructure and Texture in Polycrystalline Copper and Nickel. Metall Mater Trans A 41, 2794–2804 (2010). https://doi.org/10.1007/s11661-010-0360-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0360-x

Keywords

Navigation