Skip to main content
Log in

Evolution of Grain-Boundary Microstructure and Texture in Interstitial-Free Steel Processed by Equal-Channel Angular Extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 °C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Σ3 and Σ13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  2. F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan: Mater. Sci. Eng., A, 1999, vol. 387, pp. 809–16.

    Google Scholar 

  3. A. Vorhauer and R. Pippan: Scripta Mater., 2004, vol. 51, pp. 921–25.

    Article  CAS  Google Scholar 

  4. B. Cherukuri, T.S. Nedkova, and R. Srinivasan: Mater. Sci. Eng., A, 2005, vol. 410, pp. 394–97.

    Article  Google Scholar 

  5. B. Han and Z. Xu: Mater. Sci. Eng., A, 2007, vol. 447, pp. 119–24.

    Article  Google Scholar 

  6. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa: Scripta Mater., 1999, vol. 40, pp. 795–00.

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  8. V.M. Segal: Mater. Sci. Eng., A, 1995, vol. 197, pp. 157–64.

    Article  Google Scholar 

  9. F.H. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, pp. 1135–46.

    Article  CAS  Google Scholar 

  10. R. Arruffat-Massion, S. Suwas, L.S. Tóth, W. Skrotzki, J.-J. Fundenberger, and A. Eberhardt: Mater. Sci. Forum, 2005, vol. 495, pp. 839–44.

    Article  Google Scholar 

  11. L.S. Tóth: Comput. Mater. Sci., 2005, vol. 32, pp. 568–76.

    Article  Google Scholar 

  12. S. Suwas, L.S. Tóth, J.J. Fundenberger, A. Eberhardt, and W. Skrotzki: Scripta Mater., 2003, vol. 49, pp. 1203–08.

    Article  CAS  Google Scholar 

  13. Y.T. Zhu, T.C. Lowe, and T.G. Langdon: Scripta Mater., 2004, vol. 51, pp. 825–30.

    Article  CAS  Google Scholar 

  14. I.J. Beyerlein, L.S. Tóth, C.N. Tome, and S. Suwas: Philos. Mag., 2007, vol. 87, pp. 885–906.

    Article  CAS  ADS  Google Scholar 

  15. S. Suwas, R. Arruffat-Massion, L.S. Tóth, J.J. Fundenburger, A. Eberhardt, and W. Skrotzki: Metall. Mater. Trans. A, 2007, vol. 37A, pp. 739–51.

    ADS  Google Scholar 

  16. W. Skrotzki, N. Scheerbaum, C.-G. Oertel, H.-G. Brokmeier, S. Suwas, and L.S. Tóth: Mater. Sci. Forum, 2006, vol. 503, pp. 99–106.

    Article  Google Scholar 

  17. L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, and S. Suwas: Acta Mater., 2004, vol. 52, pp. 1885–98.

    Article  Google Scholar 

  18. S. Suwas, L.S. Toth, J.J. Fundenberger, and A. Eberhardt: Solid-State Phenom., 2005, vol. 105, pp. 357–62.

    Article  CAS  Google Scholar 

  19. B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger: Acta Mater., 2007, vol. 56, pp. 200–14.

    Article  Google Scholar 

  20. S. Suwas, S. Biswas, S.D. Singh, and K. Chattopadhyay: Mater. Sci. Forum, 2008, vols. 584–586, pp. 585–90.

    Article  Google Scholar 

  21. S. Biswas, S.D. Singh, A. Bhowmik, and S. Suwas: Mater. Sci. Forum, 2008, vols. 584–586, pp. 343–48.

    Article  Google Scholar 

  22. S. Suwas, G. Gottstein, and R. Kumar: Mater. Sci. Eng., A, 2007, vol. 471, pp. 1–14.

    Article  Google Scholar 

  23. W. Skrotzki, B. Kloden, I. Hunsche, R. Chulist, S. Suwas, and L.S. Tóth: Mater. Sci. Forum, 2007, vols. 558–559, pp. 575–80.

    Article  Google Scholar 

  24. L. Dupuy and E.F. Rauch: Mater. Sci. Eng., A, 2002, vol. 337, pp. 241–47.

    Article  Google Scholar 

  25. R.J. McElroy and Z.C. Szkopiak: Int. Met. Rev., 1972, vol. 17, pp. 175–202.

    CAS  Google Scholar 

  26. A.W. Thompson: Metall. Trans. A, 1977, vol. 8A, pp. 833–42.

    CAS  ADS  Google Scholar 

  27. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Prog. Mater. Sci., 1980, vol. 25, pp. 69–412.

    Article  CAS  Google Scholar 

  28. K. Máthis and E.F. Rauch: Mater. Sci. Eng., A, 2007, vol. 462, pp. 248–52.

    Article  Google Scholar 

  29. S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2007, vol. 55, pp. 1017–32.

    Article  CAS  Google Scholar 

  30. S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies: Acta Mater., 2006, vol. 54, pp. 1087–1100.

    Article  CAS  Google Scholar 

  31. J. De Messemaeker, B. Verlinden, and J. Van Humbeeck: Acta Mater., 2005, vol. 53, pp. 4245–57.

    Article  Google Scholar 

  32. J.-P. Mathieu, S. Suwas, A. Ebarhardt, L.S. Toth, and P. Moll: J. Mater. Proc. Technol., 2006, vol. 173, pp. 29–33.

    Article  CAS  Google Scholar 

  33. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp. 143–46.

    Article  CAS  Google Scholar 

  34. S. Matthies and G.W. Vinel: Mater. Sci. Forum (Proc. ICOTOM-10), 1994, vols. 157–162, pp. 1641–46.

  35. K. Pawlik: Phys. Status Solidi B, 1986, vol. 134, pp. 477–83.

    Article  Google Scholar 

  36. S.I. Wright: Mater. Sci. Technol., 2006, vol. 22 (11), pp. 1287–96.

    Article  CAS  Google Scholar 

  37. L.S. Tóth, R.A. Massion, L. Germain, S.C. Baik, and S. Suwas: Acta Mater., 2004, vol. 52, pp. 1885–98.

    Article  Google Scholar 

  38. D.A. Hughes and N. Hansen: Scripta Metall. Mater., 1995, vol. 33, pp. 315–21.

    Article  CAS  Google Scholar 

  39. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

  40. M. Cabbibo, W. Blum, E. Evangelista, M.E. Kassner, and M.A. Meyers: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 181–91.

    Article  ADS  Google Scholar 

  41. A. Sarkar, A. Bhowmik, and S. Suwas: Appl. Phys. A, 2009, vol. 94, pp. 943–48.

    Article  CAS  ADS  Google Scholar 

  42. N. Hansen: in Aluminium Alloys for Packaging, II, J.G. Morris, S.K. Das, and H.S. Goodrich, eds., TMS, Warrrendale, PA, 1996, pp. 129–44.

    Google Scholar 

  43. N. Hansen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2917–32.

    Article  CAS  Google Scholar 

  44. D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.

    Article  CAS  Google Scholar 

  45. A. Godfrey and D.A. Hughes: Acta Mater., 2000, vol. 48, pp. 1897–1905.

    Article  CAS  Google Scholar 

  46. D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: Acta Metall., 1964, vol. 12, pp. 813–25.

    Article  Google Scholar 

  47. M.L. Kronberg and F.H. Wilson: Metall. Trans., 1949, vol. 185, pp. 501–14.

    Google Scholar 

  48. D.G. Brandon: Acta Metall., 1966, vol. 12, pp. 1479–86.

    Google Scholar 

  49. T. Watanabe, H. Fujii, H. Oikawa, and K.I. Arai: Acta Metall., 1989, vol. 37, pp. 941–49.

    Article  CAS  Google Scholar 

  50. T. Watanabe, Y. Suzuki, S. Tahi, and H. Oikawa: Philos. Mag. Lett., 1991, vol. 62, pp. 9–17.

    Article  ADS  Google Scholar 

  51. S.Q. Cao, J.X. Zhang, J.S. Wu, L. Wang, and J.G. Chen: Mater. Sci. Eng., A, 2005, vol. 392, pp. 203–08.

    Article  Google Scholar 

  52. R. Saha and R.K. Ray: Scripta Mater., 2007, vol. 57, pp. 841–44.

    Article  CAS  Google Scholar 

  53. F.J. Humphreys and M. Hatherley: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, New York, NY, 2002, pp. 121–67.

    Google Scholar 

  54. V. Vitek, D.A. Smith, and R.C. Pond: Philos. Mag. A, 1980, vol. 41, pp. 649–61.

    Article  CAS  ADS  Google Scholar 

  55. T. Watanabe: Scripta Mater. Metall., 1992, vol. 27, pp. 1497–1502.

    Article  CAS  Google Scholar 

  56. T. Watanabe: Text. Microstruct., 1993, vol. 20, pp. 195–216.

    Article  Google Scholar 

  57. A. Garbacz and M.W. Grabski: Acta Mater. Metall., 1993, vol. 41, pp. 475–83.

    Article  Google Scholar 

  58. J. Baczynski and J.J. Jonas: Acta Mater. 1996, vol. 44, pp. 4273–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge Tata Steel (Jamshedpur, India) for providing the financial grant (Grant No. 3000024216/102) and the material to carry out the experiments. One of the authors (AB) gratefully acknowledges the prolific discussions with Prof. T. Watanabe (Retd. Professor, Tohuku University, Sendai, Japan) during the preparation of this article. Another author (SS) is thankful to Dr. N. Gope (Head, Research group, Tata Steel, Jamshedpur) for his encouragement at various stages of this project. The facility setup under the Institute Nanoscience Initiative sponsored by Department of Science and Technology through FIST (DST-FIST) program at the Indian Institute of Science (IISc) (Bangalore, India) was used in the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Additional information

Manuscript submitted September 11, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmik, A., Biswas, S., Suwas, S. et al. Evolution of Grain-Boundary Microstructure and Texture in Interstitial-Free Steel Processed by Equal-Channel Angular Extrusion. Metall Mater Trans A 40, 2729–2742 (2009). https://doi.org/10.1007/s11661-009-9939-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9939-5

Keywords

Navigation