Skip to main content
Log in

Diffuse Scattering and Monte Carlo Studies of Relaxor Ferroelectrics

  • Symposium: Neutron and X-Ray Studies for Probing Materials Behavior
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A renewed interest in the field of ferroelectricity has taken place in recent years since the finding of exceptional piezoelectric properties in the lead-oxide class of relaxor ferroelectric materials typified by the disordered perovskite PbZn1/3Nb2/3O3 (PZN). Although PZN and numerous related materials have been extensively studied over a long period, a detailed understanding of the exact nature of their polar nanostructure has still not emerged. In this article, we describe the development of Monte Carlo computer models, which seek to account for the detailed three-dimensional (3-D) diffuse neutron scattering data that have been recorded from a single crystal of PZN. It has been established that the observed diffuse patterns are due to planar nanodomains oriented normal to the six \( \left\langle {{\text{110}}} \right\rangle \) directions, but there is still some uncertainty concerning the direction of the local Pb ionic shifts, which remains an area of controversy. It is argued that further detailed analysis and experiments in which data are recorded with the crystal in an applied field should allow these remaining issues to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.E. Newnham: Acta Cryst., 1998, vol. A54, pp. 729–37

    CAS  Google Scholar 

  2. E. Cross: Nature, 2004, vol. 432, pp. 24–25

    Article  CAS  Google Scholar 

  3. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane: Nat. Mater., 2006, vol. 5, pp. 134–40

    Article  CAS  Google Scholar 

  4. S.-E. Park, T.R. Shrout: J. Appl. Phys., 1997, vol. 82, pp. 1804–11

    Article  CAS  Google Scholar 

  5. R.F. Service: Science, 1997, vol. 275, pp. 1878–80

    Article  CAS  Google Scholar 

  6. M. Pecht, Y. Fukada, S. Rajagopal: IEEE Trans. on Electronics Packaging Manufacturing, 2004, vol. 27, pp. 221–32

    Article  Google Scholar 

  7. W.W. Wolny: Ceram. Int., 2004, vol. 30, pp. 1079–83.

    Article  CAS  Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Nature, 2004, vol. 432, pp. 84–87

    Article  CAS  Google Scholar 

  9. M. Davis: J. Electroceram., 2007, vol. 19, pp. 23–45

    Article  CAS  Google Scholar 

  10. W.-F. Rau, Y.U. Wang: Appl. Phys. Lett., 2007, vol. 90, p. 182906

    Article  Google Scholar 

  11. A.J. Bell: J. Mater. Sci., 2006, vol. 41, pp. 13–25

    Article  CAS  Google Scholar 

  12. K.A. Schönau, L.A. Schmitt, M. Knapp et al.: Phys. Rev. B, 2007, vol. 75, p. 184117

    Article  Google Scholar 

  13. T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, Oxford University Press, Oxford, United Kingdom, 2004

    Google Scholar 

  14. T.R. Welberry, R.L. Withers, S.C. Mayo: J. Solid State Chem., 1995, vol. 115, pp. 43–54

    Article  CAS  Google Scholar 

  15. T.R. Welberry, A.G. Christy: Phys. Chem. Miner., 1997, vol. 24, pp. 24–38

    Article  CAS  Google Scholar 

  16. T.R. Welberry, T.H. Proffen, M. Bown: Acta Cryst., 1998, vol. A54, pp. 661–74

    CAS  Google Scholar 

  17. T.R. Welberry: Acta Cryst., 2001, vol. A57, pp. 244–55

    CAS  Google Scholar 

  18. T.R. Welberry, D.J. Goossens, A.J. Edwards, W.I.F. David: Acta Cryst., 2001, vol. A57, pp. 101–09

    CAS  Google Scholar 

  19. T.R. Welberry, D.J. Goossens, W.I.F. David et al.: J. Appl. Cryst., 2003, vol. 36, pp. 1440–47

    Article  CAS  Google Scholar 

  20. A.L. Patterson: Phys. Rev., 1944, vol. 65, pp. 195–201

    Article  CAS  Google Scholar 

  21. N.E. Brese, M. O’Keeffe: Acta Cryst., Sect. B: Struct. Sci., 1991, vol. 47, p. 192

    Article  Google Scholar 

  22. T.R. Welberry, M.J. Gutmann, H. Woo et al.: J. Appl. Cryst., 2005, vol. 38, pp. 639–47

    Article  CAS  Google Scholar 

  23. T.R. Welberry, D.J. Goossens, M.J. Gutmann: Phys. Rev. B, 2006, vol. 74, p. 224108

    Article  Google Scholar 

  24. M. Pasciak, M. Wolcyrz, A. Pietraszko: Phys. Rev., 2007, vol. B76, p. 014117

    Google Scholar 

  25. T.R. Welberry and D.J. Goossens: J. Appl. Cryst., 2008, vol. 41, pp. 606–14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.R. Welberry.

Additional information

This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welberry, T. Diffuse Scattering and Monte Carlo Studies of Relaxor Ferroelectrics. Metall Mater Trans A 39, 3170–3178 (2008). https://doi.org/10.1007/s11661-008-9572-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9572-8

Keywords

Navigation