Skip to main content

Advertisement

Log in

The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully-β Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure, tensile, and creep behavior of a Ti-5Al-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully-β Ti-Al-Nb alloy to aid in modeling the tensile and creep properties of two-phase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and creep behavior of this fully-β alloy to that for two-phase O + bcc alloys. This alloy exhibited a single-phase microstructure, containing the disordered bcc phase (β), after all the processing and heat treatments performed. This alloy was easily fabricated and workable; however, its creep resistance was significantly worse than that for fully-O and two-phase O + bcc alloys. The alloy exhibited little strain hardening along with a room-temperature yield strength (YS) of 545 MPa, an ultimate tensile stress (UTS) of 559 MPa, a Young’s modulus (E) of 86 GPa, and a tensile elongation to failure of 25 pct. Extensive surface slip was evident on the deformed material. Its room-temperature tensile properties were quite similar to those for a fully-β Ti-12Al-38Nb microstructure (YS = 553 MPa, UTS = 566 MPa, E = 84, and ε f  > 27 pct). Thus, the room-temperature tensile properties and behavior of fully-β Ti-Al-Nb microstructures containing 50 at. pct Ti are not sensitive to compositional variations between 5 to 12 at. pct Al and 38 to 45 at. pct Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Henceforth, all alloy compositions are given in atomic percent.

References

  1. M.F. Bartholomeusz, J.A. Wert: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3257–64

    Article  CAS  Google Scholar 

  2. M.F. Bartholomeusz, J.A. Wert: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2161–71

    Article  CAS  Google Scholar 

  3. H.T. Kestner-Weykamp, C.W. Ward, T.F. Broderick, M.J. Kaufman: Scripta Metall., 1989, vol. 23, pp. 1697–1702

    Article  CAS  Google Scholar 

  4. L.A. Bendersky, W.J. Boettinger, A. Roytburd: Acta Metall. Mater., 1991, vol. 39, pp. 1059–69

    Google Scholar 

  5. C.G. Rhodes, J.A. Graves, P.R. Smith, M.R. James: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 45–52

    Google Scholar 

  6. C.J. Cowen, C.J. Boehlert: Phil. Mag., 2006, vol. 86, pp. 99–124

    Article  CAS  Google Scholar 

  7. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2305–23

    Article  CAS  Google Scholar 

  8. P.R. Smith, A. Rosenberger, M.J. Shepard: Scripta Mater., 1999, vol. 41, pp. 221–28

    Article  CAS  Google Scholar 

  9. S.R. Woodard and T.M. Pollock: in Orthorhombic Titanium Matrix Composites II, AF TR WL-TR-97-4082, P.R. Smith, ed., Wright-Patterson Air Force Base, OH, 1997, pp. 265–76

  10. R.G. Rowe, M. Larsen: in Titanium ‘95, P.A. Blenkinsop, W.J. Evans, H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, pp. 364–71

    Google Scholar 

  11. C.J. Boehlert, D.B. Miracle: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2349–67

    Article  CAS  Google Scholar 

  12. C.J. Boehlert, J.F. Bingert: J. Mater. Process. Technol., 2001, vol. 117, pp. 401–09

    Article  Google Scholar 

  13. R.W. Hayes: Scripta Metall., 1996, vol. 34 (6), pp. 1005–1112

    Article  CAS  Google Scholar 

  14. P.R. Smith, M. Khobaib, J.A. Graves: Scripta Metall., 1993, vol. 29, pp. 1313–18

    Article  CAS  Google Scholar 

  15. J.C. Chesnutt, R.A. Amato, C.M. Austin, R.L. Fleischer, M.F.X. Gigliotti, D.A. Hardwick, S.C. Huang, D.G. Konitzer, M.M. Lee, P.L. Martin, C.G. Rhodes, R.G. Rowe, G.K. Scarr, D.S. Shih, and P.A. Zomcik: in Very High Temperature Titanium-Base Materials Research, WL-TR-91-4070, GE Aircraft Engines, Cincinnati, OH, 1993

  16. C.J. Boehlert: Mater. Sci. Eng., 1999, vol. A267, pp. 82–98

    CAS  Google Scholar 

  17. C.M. Austin, J.R. Dobbs, H.L. Fraser, D.G. Konitzer, D.J. Miller, M.J. Parks, J.C. Schaeffer, and J.W. Sears: in Rapidly Solidified Oxidation Resistant Niobium Base Alloys, WL-TR-93-4059, GE Aircraft Engines, Cincinnati, OH, 1992

  18. R.G. Rowe, D.G. Konitzer, A.P. Woodfield, and J.C. Chesnutt: in High Temperature Ordered Intermetallic Alloys-IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 231, pp. 703–08

  19. P.R. Smith, J.A. Graves, C.G. Rhodes: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1267–83

    Article  CAS  Google Scholar 

  20. P.R. Smith, W.J. Porter, W.J. Kralik, and J.A. Graves: Metal Matrix Composites, Proc. 10th Int. Conf. on Composite Materials, A. Poursartip and K.N. Street, eds., Woodhead Publishing Ltd., Cambridge, UK, 1995, vol. 2, pp. 731–38

  21. B.S. Majumdar, C.J. Boehlert, A.K. Rai, and D.B. Miracle: in High Temperature Ordered Intermetallic Alloys-VI, J. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 1259–65

  22. P.R. Smith, A. Rosenberger, M.J. Shepard, R. Wheeler: J. Mater. Sci., 2000, vol. 35, pp. 3169–79

    Article  CAS  Google Scholar 

  23. C.F. Yolton, J.P. Beckman: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 597–603

    Google Scholar 

  24. J.W. Zhang, C.S. Lee, D.X. Zou, S.Q. Li, J.K.L. Lai: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 559–64

    Article  CAS  Google Scholar 

  25. C.J. Cowen, C.J. Boehlert: Intermetallics, 2006, vol. 14, pp. 412–22

    Article  CAS  Google Scholar 

  26. C.J. Cowen and C.J. Boehlert: Adv. Mater. Res., 2007, Part 1, vols. 15–17, pp. 976–81

  27. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, R. Wheeler: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal, eds., TMS, Warrendale, PA, 1997, pp. 795–804

    Google Scholar 

  28. C.G. Rhodes, P.R. Smith, W.H. Hanusiak, M.J. Shephard: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2931–41

    CAS  Google Scholar 

  29. C.J. Boehlert: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1977–88

    Article  CAS  Google Scholar 

  30. A.K. Gogia, T.K. Nandy, K. Muraleedharan, D. Banerjee: Mater. Sci. Eng., A, 1992, vol. 159, pp. 73–86

    Article  Google Scholar 

  31. F.C. Dary, T.M. Pollock: Mater. Sci. Eng., 1996, vol. A208 (2), p. 188–202

    CAS  Google Scholar 

  32. F. Popille, J. Douin: Phil. Mag., 1996, vol. 73, pp. 1401–18

    Article  CAS  Google Scholar 

  33. D. Banerjee, A.K. Gogia, T.K. Nandy, K. Muraleedharan, R.S. Mishra: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 19–33

    Google Scholar 

  34. T.K. Nandy, R.S. Mishra, D. Banerjee: Scripta Metall. Mater., 1993, vol. 28, pp. 569–74

    Article  CAS  Google Scholar 

  35. T.K. Nandy, R.S. Mishra, A.K. Gogia, D. Banerjee: Scripta Metall. Mater., 1995, vol. 32, pp. 851–56

    Article  CAS  Google Scholar 

  36. T.K. Nandy, D. Banerjee: Intermetallics, 2000, vol. 8, pp. 915–28

    Article  CAS  Google Scholar 

  37. J.E. Hilliard: Met. Progr., 1964, vol. 78, pp. 99–100

    Google Scholar 

  38. Standard Test Methods for Determining Average Grain Size, ASTM Designation E112-96e3, ASTM, West Conshohocken, PA, 1996

  39. R.W. Evans and B. Wilshire: in Creep of Metals and Alloys, The Institute of Metals, New York, NY, 1985

  40. R.W. Hertzberg: in Deformation and Fracture Mechanics of Engineering Materials, 4th ed., John Wiley and Sons, New York, NY, 1996

  41. D.L. Moffat and U.R. Kattner: Metall. Trans. A, 1988, vol. 19A, pp. 2389–97

    CAS  Google Scholar 

  42. C.J. Cowen and C.J. Boehlert: in Advanced Intermetallic-Based Alloys, C.L. Fu, H. Clemens, J. Wiezorek, M. Takeyama, and D. Morris, eds., Materials Research Society, Pittsburgh, PA, 2007, vol. 980, paper no. 0980-II05-05

  43. R.S. Mishra, D. Banerjee: Mater. Sci. Eng., 1990, vol. A130, pp. 151–64

    CAS  Google Scholar 

  44. A. Kelly, K.N. Street: Proc. R. Soc. London A, 1972, vol. 328, pp. 283–93

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation through Grant No. DMR-0533954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.J. Boehlert.

Additional information

Manuscript submitted January 18, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowen, C., Boehlert, C. The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully-β Alloy. Metall Mater Trans A 38, 2747–2753 (2007). https://doi.org/10.1007/s11661-007-9322-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9322-3

Keywords

Navigation