Skip to main content
Log in

Atomistic Simulations of the Plasticity Behavior of Shock-Induced Polycrystalline Nickel

  • Symposium: Dynamic Behavior of Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shock loading single crystalline nickel creates a defected nanostructure dominated by stacking faults and twins. This transformation is caused by a complex interplay between the incident waves, the waves reflected from sample-free surfaces, and the interference between reflected waves. The plasticity behavior of this shock-induced defected nickel was studied using molecular dynamics (MD) simulations. Compared to a perfect single-crystal nickel sample of the same size, the twinned sample has significantly less yield stress in compression, a slightly lower yield stress in tension, and a yield stress about 30 pct higher in shear. Importantly, our simulations reveal the underlying atomistic mechanisms of dislocation nucleation and twin growth. We observe that while strengthening under shear loading involves lattice dislocations cutting through twins, weakening arises from nucleation of dislocations on the twins under tensile and compressive loading. Also, we have discovered precursors to dislocation loop nucleation in these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Courant, K.O. Friedrichs: Supersonic Flow and Shock Waves, Interscience, New York, NY, 1956

    Google Scholar 

  2. G.T. Gray III: ASM Handbook, vol. 8, ASM, Materials Park OH, 2000, p. 530

    Google Scholar 

  3. P.S. Follansbee, G.T. Gray III: Int. J. Plast., 1991, vol. 7, p. 651.

    Article  CAS  Google Scholar 

  4. K. Baumung, H Bluhm, G.I. Kanel, G. Müller, S.V. Razorenov, J. Singer, A.V. Utkin: Int. J. Impact Eng., 2001, vol. 24, p. 631

    Article  Google Scholar 

  5. E. Dekel, S. Eliezer, Z. Henis, E. Moshe, A. Ludmirsky, I.B. Goldberg: J. Appl. Phys., 1998, vol. 84, p. 4851

    Article  CAS  Google Scholar 

  6. C.S. Smith: Trans. AIME, 1958, vol. 212, p. 74.

    Google Scholar 

  7. B.L. Holian, P.S. Lomdahl: Science, 1998, vol. 280, p. 1085

    Article  Google Scholar 

  8. S.G. Srinivasan, M.I. Baskes, G.J. Wagner: J. Appl. Phys., 2007, vol. 101, p. 043504

    Article  Google Scholar 

  9. S.G. Srinivasan, M.I. Baskes, G.J. Wagner: J. Mater. Sci., 2006, vol. 41, p. 7838

    Article  CAS  Google Scholar 

  10. J.S. Wark et al.: Phys. Rev B, 1989, vol. 40, p. 5705.

    Article  CAS  Google Scholar 

  11. D.H. Kalantar, J.F. Belak, G.W. Collins, J.D. Colvin, H.M. Davies, J.H. Eggert, T.C. Germann, J. Hawreliak, B. Holian, K. Kadau, P.S. Lomdahl, H.E. Lorenzana, M.A. Meyers, K. Rosolankova, M.S. Schneider, J. Sheppard, J.S. Stolken, J.S. Wark: Phys. Rev. Lett., 2005, vol. 95, p. 075502.

    Article  CAS  Google Scholar 

  12. D.L. Tonks: J. Phys. IV, 1994, vol. 4, p. 665

    Article  Google Scholar 

  13. A.K. Zurek, W.R. Thissel, J.N. Johnson, D.L. Tonks, R. Hixon: J. Mater. Process. Technol., 1996, vol. 60, p. 261

    Article  Google Scholar 

  14. M. Ortiz, A. Molinari: J. Appl. Mech., 1992, vol. 59, p. 48.

    Google Scholar 

  15. S. Cochran, D. Banner: J. Appl. Phys., 1977, vol. 48, p. 2729

    Article  CAS  Google Scholar 

  16. G.R. Johnson, W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, p. 31.

    Article  Google Scholar 

  17. J.N. Johnson, G.T. Gray III, N.K. Bourne: J. Appl. Phys., 1999, vol. 86, p. 4892.

    Article  CAS  Google Scholar 

  18. S.J. Plimpton: J. Comp. Phys., 1995, vol. 117, p. 1

    Article  CAS  Google Scholar 

  19. J.E. Angelo, N.R. Moody, and M.I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, p. 289; M.I. Baskes, X.W. Sha, J.E. Angelo, and N.R. Moody: Model. Simul. Mater. Sci. Eng., 1997, vol. 5, p. 651

  20. H. Jónsson, H.C. Andersen: Phys. Rev. Lett., 1988, vol. 60, p. 2295

    Article  Google Scholar 

  21. M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton: Acta Mater., 2001, vol. 49, p. 4363.

    Article  CAS  Google Scholar 

  22. M. Khantha, D.P. Pope, V. Vitek: Phys. Rev. Lett., 1994, vol. 73, p. 684

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the ASC program at the Los Alamos National Laboratory. Many of the calculations were performed using LANL Institutional Computing Facilities using a modified version of Warp, a MD code originally developed by Steve Plimpton at Sandia National Laboratories. We thank R.G. Hoagland and Y.T. Zhu, Los Alamos National Laboratory, and G.J. Wagner, Sandia National Laboratories, for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.G. Srinivasan.

Additional information

This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, S., Baskes, M. Atomistic Simulations of the Plasticity Behavior of Shock-Induced Polycrystalline Nickel. Metall Mater Trans A 38, 2716–2720 (2007). https://doi.org/10.1007/s11661-007-9277-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9277-4

Keywords

Navigation