Skip to main content
Log in

Dislocation Mechanics of Shock-Induced Plasticity

  • Symposia: Dynamic Behavior of Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The constitutive deformation behavior of copper, Armco iron, and tantalum materials is described over a range of strain rates from conventional compressive/tensile testing, through split Hopkinson pressure bar (SHPB) test results, to shock-determined Hugoniot elastic limit (HEL) stresses and the follow-on shock-induced plasticity. A mismatch between the so-called Zerilli–Armstrong (Z-A) constitutive equation description of pioneering SHPB measurements for copper provided initial evidence of a transition from the plastic strain rate being controlled by movement of the resident dislocation population to the strain rate being controlled by dislocation generation at the shock front, not by a retarding effect of dislocation drag. The transition is experimentally confirmed by connection with Swegle–Grady-type shock vs plastic strain rate measurements reported for all three materials but with an important role for twinning in the case of Armco iron and tantalum. A model description of the shock-induced plasticity results leads to a pronounced linear dependence of effective stress on the logarithm of the plastic strain rate. Taking into account the Hall–Petch grain size dependence is important in specifying the slip vs twinning transition for Armco iron at increasing strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.S. Follansbee, G. Regazzoni, U.F. Kocks: in Mechanical Properties of Materials at High Rates of Strain, J. Harding, ed., Conf. Series No. 70, Institute of Physics, London, 1984, pp. 71–80

    Google Scholar 

  2. F.J. Zerilli, R.W. Armstrong: Acta Mater., 1992, 40:1803–08

    Article  CAS  Google Scholar 

  3. F.J. Zerilli, R.W. Armstrong: J. Appl. Phys., 1987, 61:1816–25

    Article  CAS  Google Scholar 

  4. R.W. Armstrong, V. Ramachandran, F.J. Zerilli: in Advances in Materials and Their Applications, P. Rama Rao, ed., Wiley Eastern Ltd., New Delhi, 1994, pp. 201–29

    Google Scholar 

  5. J.W. Swegle, D.E. Grady: J. Appl. Phys., 1985, 58:692–701

    Article  CAS  Google Scholar 

  6. R.W. Armstrong, F.J. Zerilli: in Advances in Twinning, S. Ankem, C.S. Pande, eds., TMS, Warrendale, PA, 1999, pp. 67–81

    Google Scholar 

  7. C.S. Smith: Trans. TMS-AIME, 1958, 212:574ff

    Google Scholar 

  8. F.A. Bandak, R.W. Armstrong, A.S. Douglas: Phys. Rev. B, 1992, 46:3228–35

    Article  Google Scholar 

  9. F.A. Bandak, D.H. Tsai, R.W. Armstrong, A.S. Douglas: Phys. Rev. B, 1993, 47:11681–11687

    Article  CAS  Google Scholar 

  10. M.A. Meyers: Mechanics and Materials; Fundamentals and Linkages, M.A. Meyers, R.W. Armstrong, H.O.K. Kirchner, eds., John Wiley & Sons, Inc., New York, NY, 1999, pp. 489–594

  11. F.A. Smidt Jr., A.L. Bement Jr.: in Dislocation Dynamics, A.R. Rosenfield, G.T. Hahn, A.L. Bement Jr., R.I. Jaffee, eds., McGraw-Hill Book Co., New York, NY, 1968, pp. 409–29.

    Google Scholar 

  12. D.H. Lassila, T. Shen, B.Y. Cao, M.A. Meyers: Metall. Mater. Trans. A, 2004, 35A:2729–39

    Article  CAS  Google Scholar 

  13. E. Orowan: Proc. Phys. Soc., London, 1940, 52:8–22

    Article  Google Scholar 

  14. A.V. Granato: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, C.H. Karnes, Plenum Press, New York, NY, 1974, p. 255ff.

    Google Scholar 

  15. F.J. Zerilli: Metall. Mater. Trans. A, 2004, 35A: 2547–55

    Article  CAS  Google Scholar 

  16. D. Hayes, R.S. Hixson, R.G. McQueen: in Shock Compression of Condensed Matter—1999, M.D. Furnish, L.C. Chhabildas, R.S. Hixson, eds., American Institute of Physics, New York, NY, 2000, pp. 483–88

    Google Scholar 

  17. W. Arnold: Dynamisches Werkstoffverhalten von Armco-Eisen bei Stosswellenbelastung, Fortschrittberichte VDI, VDI-Verlag GmbH, Dusseldorf, DE, 1992

  18. W. Arnold: in Shock Compression of Condensed Matter—1991, S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker, eds., Elsevier Science Publishers, B.V., Amsterdam, 1992, pp. 539–42.

    Google Scholar 

  19. R.W. Armstrong, F.J. Zerilli: Fundamental Issues and Applications of Shock- Wave and High-Strain-Rate Phenomena, Elsevier Science Ltd., New York, NY, 2001, pp. 115–24

    Google Scholar 

  20. H. Nahme M. Hiltl, and W. Arnold: in Shock Compression of Condensed Matter— 1995, S.C. Schmidt and W.C. Tao, eds., American Institute of Physics, Woodbury, NY, 1996, Part 1, pp. 619–22

  21. K.G. Hoge, A.K. Mukherjee: J. Mater. Sci. 1977, 12:1666ff

    Article  Google Scholar 

  22. F.J. Zerilli, R.W. Armstrong: J. Appl. Phys., 1990, 68:1580–91

    Article  CAS  Google Scholar 

  23. L.E. Murr, M.A. Meyers, C.-S. Niou, Y.-J. Chen, S. Pappu, C. Kennedy: Acta Mater., 1997, 45:157–75

    Article  CAS  Google Scholar 

  24. M.A. Meyers: in Mechanics and Materials; Fundamentals and Linkages, M.A. Meyers, R.W. Armstrong, and H.O.K. Kirchner, eds., John Wiley & Sons, Inc., New York, NY, 1999, Fig. 14.32(b), p. 539

  25. B.A. Remington, G. Bazan, J. Belak, E. Bringa et al. Metall. Mater. Trans. A, 2004, 35A:2587–607

    Article  CAS  Google Scholar 

  26. H. Jarmakani, J.M. McNaney, M.S. Schneider, D. Orlikowski et al.: in Shock Compression of Condensed Matter—2005, M.D. Furnish, M. Elert, T.P. Russell, and C.T. White, eds., American Institute of Physics, Melville, NY, 2006, CP845, Part 2, pp. 1319–22

  27. R.W. Armstrong, W. Arnold, and F.J. Zerilli: Submitted for Shock Compression of Condensed Matter—2007, June 24–29, Big Island of Hawai’i.

  28. J.P. Hirth, J. Lothe: Theory of Dislocations, McGraw-Hill Book Co., New York, NY, 1968, pp. 6–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.W. Armstrong.

Additional information

This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, R., Arnold, W. & Zerilli, F. Dislocation Mechanics of Shock-Induced Plasticity. Metall Mater Trans A 38, 2605–2610 (2007). https://doi.org/10.1007/s11661-007-9142-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9142-5

Keywords

Navigation