Skip to main content
Log in

Wear mechanism maps for thermal-spray steel coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Wear mechanisms in low-carbon-steel-based thermal-spray coatings deposited on aluminum alloys using a plasma-transfer wire-arc (PTWA) process and a high-velocity oxy-fuel (HVOF) process were studied. The coatings investigated consisted of PTWA 1020, HVOF 1020 deposited from a low-carbon steel wire stock, and HVOF 1020-2.5 pct Al produced using a wire stock with 2.5 wt pct Al added to the base AISI 1020 composition. Wear tests were performed using a pin-on-disc-type tribometer equipped with an environmental chamber within a load range of 5 to 75 N and a sliding-speed range of 0.2 to 2.5 m/s against tool steel pins in a dry air atmosphere (10 pct relative humidity). The wear rates of the three types of thermal-spray coatings and the micromechanisms that control the wear rates at different loads and sliding speeds were presented in the form of wear maps. Under dry sliding conditions, two basic wear and surface-degradation mechanisms were identified, consisting of (1) mechanical wear, which involved severe plastic deformation of the iron splats on the contact surfaces and their fracture and (2) oxidational wear that took place by the formation of various iron oxides, whose compositions and thicknesses depended on the loading conditions. The wear rates of PTWA 1020 and HVOF 1020-2.5 pct Al decreased with increasing sliding speed, as they showed a transition from mechanical wear to mild oxidation wear. The wear rates of HVOF 1020 also decreased with increasing speed, but they increased again, once they passed through a minimum where a transition from mild to severe oxidational wear occurred. An improvement in the wear resistance of HVOF 1020 was observed, in particular at high loading conditions, as a result of the addition of 2.5 pct Al to the wire feed stock. The wear maps demonstrated that the wear rates were sensitive to the compositions of the coatings and, hence, to the thermal-spray technique used in their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sampath and H. Heman: J. Thermal Spray Technol., 1996, vol. 5 (4), pp. 445–56.

    CAS  Google Scholar 

  2. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel: Int. Mater. Rev., 1997, vol. 42 (3), pp. 117–36.

    CAS  Google Scholar 

  3. F. Rastegar and A. Craft: Surface Coatings Technol., 1993, vol. 61 (1–3), pp. 36–42.

    Article  CAS  Google Scholar 

  4. P. Fauchais, A.M. Vardelle, and B. Dussoubs: in Proc. Int. Thermal Spray Conf., C.C. Berndt, K.A. Khor, and E.F. Lugscheider, eds., ASM INTERNATIONAL, Materials Park, OH, 2001, pp. 1–32.

    Google Scholar 

  5. S.E. Hartfield-Wunsch and S.C. Tung: in Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 19–32.

    Google Scholar 

  6. D.W. Parker and G.L. Kutner: Adv. Mater. Processes, 1991, pp. 68–72.

  7. A. Rabiei, D.R. Mumm, J.W. Hutchinson, R. Schweinfest, M. Ruhle, and A.G. Evans: Mater. Sci. Eng. A, 1999, vol. 269, pp. 152–65.

    Article  Google Scholar 

  8. A. Edrisy, T. Perry, Y.T. Cheng, and A.T. Alpas: Wear, 2001, vol. 251, pp. 1023–33.

    Article  Google Scholar 

  9. A. Edrisy, T. Perry, Y.T. Cheng, and A.T. Alpas: Surface Coatings Technol., 2001, vols. 146–147, pp. 571–77.

    Article  Google Scholar 

  10. A. Edrisy and A.T. Alpas: Thin Solid Films, 2002, vols. 420–421, pp. 338–44.

    Article  Google Scholar 

  11. S.C. Lim and M.F. Ashby: Acta Metall., 1987, vol. 35, pp. 1–24.

    Article  CAS  Google Scholar 

  12. M.F. Ashby, J. Abulawi, and H.S. Hong: Tribol. Trans., 1991, vol. 34, pp. 557–87.

    Google Scholar 

  13. T.F.J. Quinn: Br. J. Appl. Phys., 1962, vol. 13, pp. 33–37.

    Article  CAS  Google Scholar 

  14. T.F.J. Quinn: ASLE Trans., 1967, vol. 10, pp. 158–68.

    Google Scholar 

  15. R.F.J. Quinn: Tribol. Int., 1983, vol. 16, pp. 257–71.

    Article  CAS  Google Scholar 

  16. R.F.J. Quinn: Tribol. Int., 1983, vol. 16, pp. 305–15.

    Article  CAS  Google Scholar 

  17. A. Muan and E.F. Osborn: Phase Equilibria among Oxides in Steelmaking, Addison-Wesley, Reading, MA, 1965, p. 27.

    Google Scholar 

  18. J. Molgaard: Wear, 1976, vol. 40, pp. 277–91.

    Article  CAS  Google Scholar 

  19. H. Kato, T.S. Eyre, and B. Ralph: Acta Metall. Mater., 1994, vol. 42, pp. 1703–13.

    Article  CAS  Google Scholar 

  20. Y. Liu, R. Asthana, and P.K. Rohatgi: J. Mater. Sci., 1991, vol. 26, pp. 99–102.

    Article  CAS  Google Scholar 

  21. R. Antoniou and C. Subramanian: Scripta Metall., 1988, vol. 22 (6), pp. 809–14.

    Article  CAS  Google Scholar 

  22. P.K. Rohatgi, Y. Liu, and R. Asthana, in Tribology of Composite Materials, P.K. Rohatgi, P.I. Blau, and C.S. Yust, eds., ASM, Materials Park, OH, 1991, pp. 69–80.

    Google Scholar 

  23. J. Zhang and A.T. Alpas: Acta Mater., 1997, vol. 45, pp. 513–28.

    Article  CAS  Google Scholar 

  24. S. Wilson and A.T. Alpas: Wear, 1997, vol. 212, pp. 41–49.

    Article  CAS  Google Scholar 

  25. A.R. Riahi and A.T. Alpas: Wear, 2001, vol. 251, pp. 1396–407.

    Article  Google Scholar 

  26. D.R. Marantz, K.A. Kowalsky, J.R. Baughman, and D.J. Cook: United States Patent No. 5,808,270, 1998.

  27. Daniel R. Maranatz, David R. Marantz, and K.A. Kowalsky: United States Patent 5,296,667, 1994.

  28. A. Edrisy, T. Perry, and A.T. Alpas: Wear, 2005, vol. 259, pp. 1056–62.

    Article  CAS  Google Scholar 

  29. S.L. Rice, H. Nowotny, and S.F. Wayne, in Fundamentals of Tribology, N.P. Suh and N. Saka, eds., MIT Press, Cambridge, MA, 1989, pp. 77–100.

    Google Scholar 

  30. P. Heilmann, W.A.T. Clark, and D.A. Rigney: Acta Metall., 1983, vol. 31, pp. 1293–1305.

    Article  CAS  Google Scholar 

  31. N.C. Welsh: Phil. Trans. Royal Soc. (London), 1965, vol. A257, pp. 31–50.

    Google Scholar 

  32. N.C. Welsh: J. Appl. Phys., 1957, vol. 28 (9), pp. 960–68.

    Article  CAS  Google Scholar 

  33. J.F. Archard: Wear, 1952, vol. 2, pp. 438–49.

    Article  Google Scholar 

  34. E.O. Hall: Proc. Royal Soc. London, 1951, vol. B64, p. 474.

    Google Scholar 

  35. N.J. Petch: J. Iron Steel Inst., 1953, vol. 74, p. 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edrisy, A., Alpas, A.T., Nserc et al. Wear mechanism maps for thermal-spray steel coatings. Metall Mater Trans A 36, 2737–2750 (2005). https://doi.org/10.1007/s11661-005-0270-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0270-5

Keywords

Navigation