Skip to main content
Log in

A framework for modeling creep in pure metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The process of creep in pure metals is modeled as the cooperative interaction of three phenomena: the thermally activated, force-dependent release of dislocation segments from obstacles; the substructural refinement of the microstructure due to plastic deformation; and the diffusion-controlled coarsening of the substructure. Key parameters are given as approximate generic values which can be varied. It is shown that for a wide range of parameters, the model reproduces the key features of the creep of pure metals: a steady-state stress exponent near 5 is recovered, and the key microstructural-length scale is related by a power law close to the reciprocal of stress (this dependence is not a strong function of temperature at a given stress). In addition, the activation energy of steady-state creep is nearly that of self-diffusion. Thus, the model reproduces the well-known phenomenology of puremetal steady-state creep. However, the present model is based on separate microstructural phenomena, which can be independently refined and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.D. Sherby and P. Burke: Progr. Mater. Sci., 1967, vol. 13, p. 325.

    Google Scholar 

  2. M.E. Kassner and M.T. Perez-Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–102.

    Article  CAS  Google Scholar 

  3. J. Cadek: Materials Science Monographs, Elsevier New York, NY, 1988, vol. 48.

    Google Scholar 

  4. H. Luthy, A.K. Miller, and O.D. Sherby: Acta Metall., 1980, vol. 28, p. 169.

    Article  CAS  Google Scholar 

  5. J.P. Poirier: Creep of Crystals, High Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, New York, NY, 1985.

    Google Scholar 

  6. O.D. Sherby and J. Weertman: Acta Metall., 1979, vol. 27, p. 387.

    Article  CAS  Google Scholar 

  7. R.L. Orr, O.D. Sherby, and J.E. Dorn: Trans. ASME, 1954, vol. 46, p. 113.

    CAS  Google Scholar 

  8. J. Weertman: J. Appl. Phys., 1955, vol. 26, p. 1213.

    Article  CAS  Google Scholar 

  9. J. Weertman: J. Appl. Phys., 1957, vol. 28, p. 362.

    Article  CAS  Google Scholar 

  10. A.K. Mukherjee: in Treatise on Materials Science and Technology, R.J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, p. 163.

    Google Scholar 

  11. O.D. Sherby: personal communications, 1984–88.

  12. J.G. Harper and J.E. Dorn: Acta Metall., 1957, vol. 5, p. 654.

    Article  CAS  Google Scholar 

  13. A.J. Ardell: Acta Mater., 1997, vol. 45, pp. 2971–81.

    Article  CAS  Google Scholar 

  14. F.A. Mohamed and T.G. Ginter: Acta Metall., 1982, vol. 30, p. 1869.

    Article  Google Scholar 

  15. J. Weertman: Proc. 2nd Int. Conf. Creep and Fracture in Engineering Materials and Structures, B. Wilshire and D.R.J. Owen, eds., Pineridge Press, Swansea, 1984, p. 1.

    Google Scholar 

  16. K.D. Challenger and J. Moteff: Metall. Trans., 1973, vol. 4, pp. 749–59.

    CAS  Google Scholar 

  17. C. Perdrix, Y.M. Perrin, and F. Montheillet: Mern Sci. Rev. Metall., 1981, vol. 78, p. 309.

    CAS  Google Scholar 

  18. M. Biberger and J.C. Gibeling: Acta Metall. Mater., 1995, vol. 43, pp. 3247–60.

    Article  CAS  Google Scholar 

  19. S.L. Robinson and O.D. Sherby: Acta Metall., 1969, vol. 17, p. 109.

    Article  CAS  Google Scholar 

  20. C.R. Barrett and O.D. Sherby: Trans. AIME, 1964, vol. 203, p. 1322.

    Google Scholar 

  21. P.M. Burke, W.R. Cannon, and O.D. Sherby: J. Mater. Sci., 1968.

  22. J.E. Breen and J. Weertman: Trans. AIME, 1955, vol. 203, p. 1230.

    Google Scholar 

  23. W.D. Nix and B. Ilschner: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1980, p. 1503.

    Google Scholar 

  24. R.P. Carreker: J. Appl. Phys., 1950, vol. 21, pp. 1289–96.

    Article  CAS  Google Scholar 

  25. U.F. Kocks, A.S. Argon, and M.F. Ashby: Proc. Mater. Sci., 1975, vol. 19.

  26. G.S. Daehn: Acta Mater., 2001, vol. 49 (11), pp. 2017–26.

    Article  CAS  Google Scholar 

  27. M.R. Staker and D.L. Holt: Acta Metall., 1972, vol. 20, p. 569.

    Article  CAS  Google Scholar 

  28. H.V. Atkinson: Acta Metall., 1988, vol. 36 (3), pp. 469–91.

    Article  CAS  Google Scholar 

  29. J.E. Burke and D. Turnbull: Progress in Metal Physics, Pergamon Press, London, 1952, vol. 3, p. 220.

    Google Scholar 

  30. C.S. Jayanth and P. Nash: J. Mater. Sci., 1989, vol. 24, 3041–52.

    Article  CAS  Google Scholar 

  31. A. Siegert: Phys. Rev. Lett., 1998, vol. 81, pp. 5481–84.

    Article  CAS  Google Scholar 

  32. P. Smilauer and D.D. Vvedensky: Phys. Rev. B, 1995, vol. 52 (19), pp. 14263–14272.

    Article  CAS  Google Scholar 

  33. L. Sung, A. Karim, J.F. Douglas, and C.C. Han: Phys. Rev. Lett., 1996, vol. 76, pp. 4368–71.

    Article  CAS  Google Scholar 

  34. B. Derrida: Physica D, Elsevier, New York, NY, 1997, pp. 467–77.

    Google Scholar 

  35. P.G. Shewmon: Diffusion in Solids, McGraw-Hill Series in Materials Science and Engineering, McGraw-Hill, New York, NY, 1963.

    Google Scholar 

  36. S. Takeuchi and A.S. Argon: J. Mater. Sci., 1976, vol. 11, pp. 1542–66.

    Article  CAS  Google Scholar 

  37. O.D. Sherby: Acta Metall., 1962, vol. 10, pp. 135–41.

    Article  CAS  Google Scholar 

  38. F. Garofalo: Fundamentals of Creep and Creep-Rupture in Metals, Macmillan Series in Materials Science, Macmillan, 1965.

  39. H. Brehm and G.S. Daehn: A Model for Slip Creep Based on Coarsening Kinetics, to be published.

  40. O.D. Sherby, R.H. Klundt, and A.K. Miller: Metall. Mater. Trans. A, 1977, vol. 8A, p. 843.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, H., Daehn, G.S. A framework for modeling creep in pure metals. Metall Mater Trans A 33, 363–371 (2002). https://doi.org/10.1007/s11661-002-0097-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0097-2

Keywords

Navigation