Skip to main content
Log in

Thermal expansion behavior of silver matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Silver matrix composites containing 10 to 40 vol pct ceramic reinforcements of different types, shapes, and sizes were processed by electroless silver plating and hot pressing. The thermal expansion behavior of the silver matrix composites has been studied from room temperature to 300 °C. The coefficients of thermal expansion (CTEs) of the composites are effectively lowered to below 10 × 10−6/°C by the addition of 40 vol pct reinforcements. The CTEs of composites decrease as the content of reinforcements increases due to the constraint effect provided by the ceramic reinforcements with low CTEs; this effect is more pronounced with the addition of whiskers and fibrous reinforcements. At the beginning of measurements, large residual thermal stresses existing in the water-quenched composites restrict the expansion of the silver matrix, resulting in lower CTEs than those of furnance-cooled composites. As the temperature increases, the residual thermal stresses are gradually released, and the CTEs of composites reach higher and stable values. At temperatures above 250 °C, the CTEs of composites increase at a higher rate due to the matrix yielding and interfacial debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.V. Zan: Microchip Fabrication, 3rd ed., McGraw-Hill, New York, NY, 1996, pp. 549–86.

    Google Scholar 

  2. K.M. Striny: in VLSI Technology, S.M. Sze, ed., McGraw-Hill, New York, NY, 1998, pp. 566–611.

    Google Scholar 

  3. S. Fuchs and P.G. Barnwell: Int. J. Microcircuits Electronic Packaging, 1997, vol. 20 (1), pp. 61–67.

    CAS  Google Scholar 

  4. E.J. Rymaszewski, R.R. Tummala, and T. Watari: in Microelectronics Packaging Handbook, 2nd ed., R.R. Tummala, E.J. Rymaszewski, and A.G. Klopfenstein, eds., Chapman and Hall, New York, NY, 1996, Part I, pp. 85–86.

    Google Scholar 

  5. E. Shapiro and J. Crane: High Conductivity Copper and Aluminum Alloys, TMS, Warrendale, PA, 1984, pp. 53–62.

    Google Scholar 

  6. R.M. German, K.F. Hens, and J.L. Johnson: Int. J. Microcircuits Electronic Packaging, 1994, vol. 30 (2), pp. 205–15.

    CAS  Google Scholar 

  7. Y.S. Shen, P. Lattari, J. Gardner, and H. Weigard: in Metals Handbook, 10th ed., S.R. Lampman and T.B. Zorc, eds., ASM, Metals Park, OH, 1990, vol. 2, pp. 840–68.

    Google Scholar 

  8. A.V. Nadkarni, J.E. Synk, P.S. Gilman, and J.S. Benjamin: in Metals Handbook, 9th ed., K. Mills, J.R. Davis, S.K. Refsnes, and B.R. Sanders, eds., ASM, Metals Park, OH, 1984, vol. 7, pp. 710–27.

    Google Scholar 

  9. H. Lambilly and H.O. Keser: IEEE Trans. Comp. Hibrides Manufacturing Technol., 1993, vol. 16 (4), pp. 69–84.

    Google Scholar 

  10. B.J. Wang and N. Saka: Wear, 1996, vol. 195, pp. 133–47.

    Article  CAS  Google Scholar 

  11. Z.K. Chen and K. Sawa: Wear, 1996, vol. 199, pp. 237–44.

    Article  CAS  Google Scholar 

  12. C.D. Coxe, A.S. McDonald, and G.H. Sistare, Jr.: in Metals Handbook, 10th ed., S.R. Lampman and T.B. Zorc, eds., ASM, Metals Park, OH, 1990, vol. 2, p. 699.

    Google Scholar 

  13. J.H. Lin and S.J. Lin: Proc. Symp. ASM-TMS Composite Committee (SMD), 125th TMS Annual Meeting and Exhibition, Anaheim, CA, 1996, TMS, Warrendale, PA, 1996, pp. 57–62.

    Google Scholar 

  14. S.Y. Chang, J.H. Lin, S.J. Lin, and T.Z. Kattamis: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1119–36.

    CAS  Google Scholar 

  15. M. Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  16. R.J. Arsenault and R.M. Fisher: Scripta Metall., 1983, vol. 17, p. 67.

    Article  CAS  Google Scholar 

  17. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, p. 175.

    Article  CAS  Google Scholar 

  18. C.T. Kim, J.K. Lee, and M.R. Plichta: Metall. Trans. A, 1990, vol. 21A, pp. 673–82.

    CAS  Google Scholar 

  19. B.C. Bechford, R.L. Beatty, and J.L. Cook: Proc. Int. Conf. on Composite Materials—IV, Tokyo, 1982, The Japan Society for Composite Materials, Tokyo, 1982, pp. 113–20.

    Google Scholar 

  20. T.W. Clyne and P.J. Wither: in An Introduction to Metal Matrix Composites, E.A. Davis and I.M. Ward, eds., Cambridge University Press, New York, NY, 1993, p. 479.

    Google Scholar 

  21. T.H. Courtney: in Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 1996, pp. 46–50.

    Google Scholar 

  22. R.A. Schapery: J. Comp. Mater., 1968, vol. 2 (3), pp. 380–404.

    Article  Google Scholar 

  23. E.H. Kerner: Proc. Phys. Soc. London, 1956, vol. B69, p. 808.

    Google Scholar 

  24. R.A. Schapery: J. Comp. Mater., 1969, vol. 2, p. 311.

    Google Scholar 

  25. J.C. Halpin and S.W. Tsai: Effects of Environmental Factors on Composite Materials Design, Air Force Materials Laboratory Technical Report, AFML TR 67-423, June, 1969.

  26. Z. Zhao, S. Zhijian, and X. Yingkun: Mater. Sci. Eng. A, 1991, vol. A132, p. 83.

    CAS  Google Scholar 

  27. K. Rayleigh: Phil. Mag., 1982, vol. 34, p. 481.

    Google Scholar 

  28. Y. Flom and R.J. Arsenault: Mater. Sci. Eng., 1985, vol. 75, p. 151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SY., Lin, SJ. & Flemings, M.C. Thermal expansion behavior of silver matrix composites. Metall Mater Trans A 31, 291–298 (2000). https://doi.org/10.1007/s11661-000-0073-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0073-7

Keywords

Navigation