Skip to main content
Log in

Berberine Induces Cell Apoptosis through Cytochrome C/Apoptotic Protease-Activating Factor 1/Caspase-3 and Apoptosis Inducing Factor Pathway in Mouse Insulinoma Cells

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate apoptotic effects of berberine, a significant alkaloids component existing in Rhizoma coptidis, and its possible acting mechanism in insulinoma cells.

Methods

Different concentrations of berberine were used to treat mouse insulinoma (MIN6) cells for various period of time. The viability and apoptosis of the cells were analyzed using methylthiazolyldiphenvl-tetrazolium bromide assay, flow cytometry and enzyme-linked immuno sorbent assay. Changes in the relating pro- and anti-apoptosis proteins were detected by western-blotting.

Results

The half-maximal inhibitory concentration (IC50) of berberine was 5.7 μmol/L on MIN6 cells viability for 16 h. Berberine caused a 20% reduction (P<0.05) in cell number after only 4-h incubation; which reached 50% after 24 h (P<0.01). Berberine treatment for 16 h significantly increased the level of DNA fragmentation. The flow cytometry showed the apoptotic rate increased 2.9- and 4.6-fold after treating with berberine (5 μmol/L) for 8 and 16 h, while 3- and 8.7-fold after 10 μmol/L treatment for 8 and 16 h (P<0.01). Berberine treatment dramatically elevated the expression ratio of Bax to Bcl-2. Meanwhile, berberine notably increased the apoptosis-inducing factors and cytochrome C transforming from the mitochondria to the cytoplasm. Apoptotic protease-activating factor 1 (Apaf-1) was subsequently activated after cytochrome C release. Furthermore, caspase-3 and poly adenosine diphosphate-ribose polymerase were also activated to trigger apoptosis cascade.

Conclusion

High concentration (5 and 10 μmol/L) of berberine could induce the apoptosis of MIN6 cells through cytochrome C/Apaf-1/caspase-3 and apoptosis inducing factor (AIF) pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ning G, Hong J, Bi Y, Gu W, Zhang Y, Zhang Z, et al. Progress in diabetes research in China. J Diabetes 2009;1:163–172.

    Article  CAS  Google Scholar 

  2. Huang ZJ, Zeng Y, Lan P, Sun PH, Chen WM. Advances in structural modifications and biological activities of berberine: an active compound in traditional Chinese medicine. Mini Rev Med Chem 2011;11:1122–1129.

    Article  CAS  Google Scholar 

  3. Pang B, Zhao LH, Zhou Q, Zhao TY, Wang H, Gu CJ, et al. Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015;2015:905749.

    Article  Google Scholar 

  4. Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, et al. Protective effect of berberine on beta cells in streptozotocinand high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmacol 2009;606:262–268.

    Article  CAS  Google Scholar 

  5. Wu S, Lu FE, Dong H. Effects of berberine on the pancreatic beta cell apoptosis in rats with insulin resistance. Chin J Integr Tradit West Med (Chin) 2011;31:1383–1388.

    CAS  Google Scholar 

  6. Wang ZQ, Lu FE, Leng SH, Fang XS, Chen G, Wang ZS, et al. Facilitating effects of berberine on rat pancreatic islets through modulating hepatic nuclear factor 4 alpha expression and glucokinase activity. World J Gastroenterol 2008;14:6004–6011.

    Article  CAS  Google Scholar 

  7. Xue M, Yang MX, Zhang W, Li XM, Gao DH, Ou ZM, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed 2013;8:4677–4687.

    Article  Google Scholar 

  8. Shen N, Huan Y, Shen ZF. Berberine inhibits mouse insulin gene promoter through activation of AMP activated protein kinase and may exert beneficial effect on pancreatic betacell. Eur J Pharmacol 2012;694:120–126.

    Article  CAS  Google Scholar 

  9. Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 2015;161:69–81.

    Article  CAS  Google Scholar 

  10. Ming M, Sinnett-Smith J, Wang J, Soares HP, Young SH, Eibl G, et al. Dose-dependent AMPK-dependent and independent mechanisms of berberine and metformin inhibition of mTORC1, ERK, DNA synthesis and proliferation in pancreatic cancer cells. PLoS One 2014;9:e114573.

    Article  Google Scholar 

  11. Füllgrabe J, Hajji N, Joseph B. Cracking the death code: apoptosis-related histone modifications. Cell Death Differ 2010;17:1238–1243.

    Article  Google Scholar 

  12. Lu X, Guo H, Zhang Y. Protective effects of sulfated chitooligosaccharides against hydrogen peroxide-induced damage in MIN6 cells. Int J Biol Macromol 2012;50:50–58.

    Article  CAS  Google Scholar 

  13. Li Z, Zhou Z, Huang G, Hu F, Xiang Y, He L. Exendin-4 protects mitochondria from reactive oxygen species induced apoptosis in pancreatic Beta cells. PLoS One 2013;8:e76172.

    Article  CAS  Google Scholar 

  14. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998;281:1322–1326.

    Article  CAS  Google Scholar 

  15. Cheng D, Zhang L, Yang G, Zhao L, Peng F, Tian Y, et al. Hepatitis C virus NS5A drives a PTEN-PI3K/Akt feedback loop to support cell survival. Liver Int 2015;35:1682–1691.

    Article  CAS  Google Scholar 

  16. Huang H, Kang R, Wang J, Luo G, Yang W, Zhao Z. Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 2013;9:175–195.

    Article  CAS  Google Scholar 

  17. Chowdhury S, Wang X, Srikant CB, Li Q, Fu M, Gong YJ, et al. IGF-I stimulates CCN5/WISP2 gene expression in pancreatic beta-cells, which promotes cell proliferation and survival against streptozotocin. Endocrinology 2014;155:1629–1642.

    Article  Google Scholar 

  18. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2256–2264.

    Article  CAS  Google Scholar 

  19. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 2004;25:496–502.

    CAS  PubMed  Google Scholar 

  20. Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism 2011;60:298–305.

    Article  CAS  Google Scholar 

  21. Park SH, Sung JH, Kim EJ, Chung N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz J Med Biol Res 2015;48:111–119.

    Article  CAS  Google Scholar 

  22. Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, et al. Berberine acutely inhibits insulin secretion from beta-cells through 3′,5′-cyclic adenosine 5′-monophosphate signaling pathway. Endocrinology 2008;149:4510–4518.

    Article  CAS  Google Scholar 

  23. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    Article  CAS  Google Scholar 

  24. Ivanovi-Mati S, Bogojevi D, Martinovi V, Petrovi A, Jovanovi-Stojanov S, Poznanovi G, et al. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy. J Physiol Biochem 2014;70:947–959.

    Article  Google Scholar 

  25. Vujicic M, Nikolic I, Krajnovic T, Cheng KF, VanPatten S, He M, et al. Novel inhibitors of macrophage migration inhibitory factor prevent cytokine-induced beta cell death. Eur J Pharmacol 2014;740:683–689.

    Article  CAS  Google Scholar 

  26. Liu J, Chen Z, Zhang Y, Zhang M, Zhu X, Fan Y, et al. Rhein protects pancreatic beta-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes 2013;62:3927–3935.

    Article  CAS  Google Scholar 

  27. Ghorai A, Sarma A, Bhattacharyya NP, Ghosh U. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis. Apoptosis 2015;20:562–580.

    Article  CAS  Google Scholar 

  28. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K. Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 2005;24:1375–1386.

    Article  CAS  Google Scholar 

  29. Delettre C, Yuste VJ, Moubarak RS, Bras M, Lesbordes-Brion JC, Petres S, et al. AIFsh, a novel apoptosisinducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J Biol Chem 2006;281:6413–6427.

    Article  CAS  Google Scholar 

  30. Hong Y, Nie H, Wei X, Fu S, Ying W. NAD+ treatment can prevent rotenone-induced increases in DNA damage, bax levels and nuclear translocation of apoptosis-inducing factor in differentiated PC12 cells. Neurochem Res 2015;40:837–842.

    Article  CAS  Google Scholar 

  31. Chen QM, Xie MZ. Studies on the hypoglycemic effect of Coptis chinensis and berberine. Acta Pharm Sin (Chin) 1986;21:401–406.

    CAS  Google Scholar 

  32. Song Mz, Yu J, Bao ZRGT. Compatibility of traditional Chinese medicine to reduce the toxicity and modern research progress. Pharm Clin Chin Mater Med (Chin) 2012;02:51–53,59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The conception and study design: Gao SH, Liu JL, Yin HP; acquisition of data, analysis and interpretation of data: Fang X, Miao XL, Mu QQ, Yu N; drafting the article and revising it critically for important intellectual content: Fang X, Miao XL, Zhang DW, Zhao DD, Wang M, Mo FF.

Corresponding author

Correspondence to Si-hua Gao.

Additional information

Conflict of Interest

The authors do not have any conflict of interest to declare.

Supported by the National Natural Science Foundation of China (No. NSFC81274041 and No. NSFC81273995), the International Cooperation Projects of Ministry of Education (No. 2011DFA30920), the Key Drug Development Program of Ministry of Science an Technology (No. 20122X09103201-005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Miao, Xl., Liu, Jl. et al. Berberine Induces Cell Apoptosis through Cytochrome C/Apoptotic Protease-Activating Factor 1/Caspase-3 and Apoptosis Inducing Factor Pathway in Mouse Insulinoma Cells. Chin. J. Integr. Med. 25, 853–860 (2019). https://doi.org/10.1007/s11655-015-2280-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2280-5

Keywords

Navigation