Skip to main content
Log in

Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/β-catenin signaling pathway in human umbilical vein endothelial cells

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the anti-angiogenic effect of cryptotanshinone (CPT) on human umbilical vein endothelial cells (HUVECs) and the effect of CPT on Wnt/β-catenin signaling pathway.

Methods

HUVECs were incubated with 0, 2.5, 5, 10, and 20 μ mol/L CPT for detecting cell viability with dimethyl thiazolyl-2,5-diphenyltetrazolium bromide (MTT) assay. Then, HUVECs were incubated with 0, 2.5, 5, and 10 μ mol/L CPT for detecting endothelial cell migration, invasion, and tubular-like structure formation with wound healing, transwell invasion and matrigel tube formation assays, respectively. To gain insight into CPT-mediated signaling, the effects of CPT on T-cell factor/lymphocyte enhancer factor (TCF/LEF) transcription factors were detected by the Dual-luciferase reporter assay. Next, the nuclear expression of β-catenin was evaluated using Western blot and immunochemistry. Finally, vascular endothelial growth factor (VEGF) and cyclin D1, downstream proteins of the Wnt pathway were examined with Western blot.

Results

CPT dose-dependently suppressed endothelial cell viability, migration, invasion, and tubular-like structure formation. In particular, CPT blocked β-catenindependent transcription in HUVECs in a dose-dependent manner. In Western bolt, 10 μ mol/L CPT decreased expression of β-catenin in nucleus of HUVECs (P<0.01). In immunohistochemistry, β-catenin was more potent in response to LiCl (an activator of the pathway) treatment. However, the signals were weaker in the nucleus of the CPT (10 μ mol/L) group, compared to the positive control. Also, VEGF and cyclin D1 were both eliminated by CPT in 5 and 10 μ mol/L doses (P<0.05).

Conclusion

Our study supported the role of CPT as an angiogenic inhibitor, which may impact on the Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang AL, Liang QH, Cui HJ, Zhou HJ, Luo JK, Tang T. Angiogenesis opens a way for Chinese medicine to treat stroke. Chin J Integr Med 2013;19:815–819.

    Article  PubMed  Google Scholar 

  2. Wu DJ, Ye BD, Hu ZP, Shen YP, Shen JP, Lin SY, et al. Bone marrow angiogenesis in patients presenting with differential Chinese medicine syndrome: correlation with the clinico-pathological features of aplastic anemia. Chin J Integr Med 2013;19:905–912.

    Article  PubMed  CAS  Google Scholar 

  3. Qian YY, Zhang H, Hou Y, Yuan L, Li GQ, Guo SY, et al. Celastrus orbiculatus extract inhibits tumor angiogenesis by targeting vascular endothelial growth factor signaling pathway and shows potent antitumor activity in hepatocarcinomas in vitro and in vivo. Chin J Integr Med 2012;18:752–760.

    Article  PubMed  Google Scholar 

  4. Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation 2011;124:2129–2138.

    Article  PubMed  CAS  Google Scholar 

  5. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Human Pathol 1999;30:919–925.

    Article  CAS  Google Scholar 

  6. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 2004;110:2032–2038.

    Article  PubMed  Google Scholar 

  7. Mao W, Kong J, Dai J, Huang ZQ, Wang DZ, Ni GB, et al. Evaluation of recombinant endostatin in the treatment of atherosclerotic plaques and neovascularization in rabbits. Zhejiang Univ Sci B 2010;11:599–607.

    Article  CAS  Google Scholar 

  8. Lu Y, Foo LY. Polyphenolics of Salvia—a review. Phytochemistry 2002;59:117–140.

    Article  PubMed  CAS  Google Scholar 

  9. Gong Y, Li YL, Lu Y, Li LL, Abdolmaleky H, Blackburn GL, et al. Bioactive tanshinones in Salvia Miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer 2011;129:1042–1052.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Hur JM, Shim JS, Jung HJ, Kwon HJ. Cryptotanshinone but not tanshinone II A inhibits angiogenesis in vitro. Exp Mol Med 2005;37:133–137.

    Article  PubMed  CAS  Google Scholar 

  11. Bian WP, Xu Y, Wang J, Chen F. The antiangiogenesis effect of cryptotanshinone on chick embryo chorioallantoic membrane. Chin Microcircul (Chin) 2007;1:23–26.

    Google Scholar 

  12. Luo Y, Chen WX, Zhou HY. Cryptotanshinone inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3/ERK and small GTPase pathways. Cancer Prev Res 2011;4:2083–2091.

    Article  CAS  Google Scholar 

  13. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, et al. S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 2010;9:468–476.

    Article  Google Scholar 

  14. Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, et al. The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 2010;18:938–949.

    Article  PubMed  CAS  Google Scholar 

  15. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009;17:9–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Goodwin AM, Sullivan KM, D’Amore PA. Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 2006;235:3110–3120.

    Article  PubMed  CAS  Google Scholar 

  17. Masckauchan TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J. Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 2005;8:43–51.

    Article  PubMed  CAS  Google Scholar 

  18. Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini N, Barker M, et al. The TAK1-NLK-MAPK-related pathway antagonizes signaling between beta-catenin and transcription factor TCF. Nature 1999;399:798–802.

    Article  PubMed  CAS  Google Scholar 

  19. Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 1997;185:82–91.

    Article  PubMed  CAS  Google Scholar 

  20. Klein P, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci 1996;93:8455–8459.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Vita JA. Endothelial function. Circulation 2011;124:906–912.

    Article  Google Scholar 

  22. Reis M, Liebner S. Wnt signaling in the vasculature. Angiogenesis 2002;5:1–9.

    Article  Google Scholar 

  23. Xu YX, Wu CL, Wu Y, Tong PJ, Jin HT, Wu NZ, et al. Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β signal pathway activation. Chin J Integr Med 2012;18:909–917.

    Article  PubMed  CAS  Google Scholar 

  24. Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 2004;137:668–674.

    PubMed  CAS  Google Scholar 

  25. Young-Mi Kim, Sewook Hwang, Young-Myoeng Kim, Bo-Jeong Pyun, Tae-Yoon Kim, Seung-Taek Lee, et al. Endostatin blocks vascular endothelial growth factormediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002;277:50768–50775.

    Article  Google Scholar 

  26. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  27. Chen WX, Luo Y, Liu L, Zhou HY, Xu BS, Han ZX, et al. Cryptotanshinone inhibits cancer cell proliferation by suppressing mTOR-mediated cyclin D1 expression and rbphosphorylation. Cancer Prev Res (Phila) 2010;3:1015–1025.

    Article  CAS  Google Scholar 

  28. Couffinhal T, Dufourcq P Duplàa C. β-catenin nuclear activation: common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circ Res 2006;99:1287–1289.

    Article  PubMed  CAS  Google Scholar 

  29. Quasnichka H, Slater SC, Beeching CA, Boehm B, Sala-Newby GB, George SJ. Regulation of smooth muscle cell proliferation by beta-catenin/TCF signaling involves modulation of cyclin D1 and p21 expression. Circ Res 2006;99:1329–1337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Mao  (毛 威).

Additional information

Supported by National Natural Science Foundation of China (No. 81170270) and Medicine and Technology Program of Zhejiang Province (No. 2013KYB188)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhuang, Q., Mao, W. et al. Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/β-catenin signaling pathway in human umbilical vein endothelial cells. Chin. J. Integr. Med. 20, 743–750 (2014). https://doi.org/10.1007/s11655-014-1810-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-014-1810-x

Keywords

Navigation