Skip to main content
Log in

Trimmed fuzzy clustering for interval-valued data

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

In this paper, following a partitioning around medoids approach, a fuzzy clustering model for interval-valued data, i.e., FCMd-ID, is introduced. Successively, for avoiding the disruptive effects of possible outlier interval-valued data in the clustering process, a robust fuzzy clustering model with a trimming rule, called Trimmed Fuzzy \(C\)-medoids for interval-valued data (TrFCMd-ID), is proposed. In order to show the good performances of the robust clustering model, a simulation study and two applications are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DT, Bezdek JC, Popescu M, Keller JM (2010) Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans Fuzzy Syst 18(5):906–918

    Article  Google Scholar 

  • Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. Wiley, England

    Book  Google Scholar 

  • Brown J, Broderick AJ, Lee N (2007) Word of mouth communication within online communities: conceptualizing the online social network. J Interact Mark 21(3):2–20

    Article  Google Scholar 

  • Campello RJGB (2007) A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognit Lett 28(7):833–841

    Article  Google Scholar 

  • Campello RJGB, Hruschka ER (2006) A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst 157(21):2858–2875

    Article  MATH  MathSciNet  Google Scholar 

  • de Carvalho FdAT (2007) Fuzzy \(c\)-means clustering methods for symbolic interval data. Pattern Recognit Lett 28(4):423–437

    Article  Google Scholar 

  • de Carvalho FdAT, Tenório CP (2010) Fuzzy \(k\)-means clustering algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy Sets Syst 161(23):2978–2999

    Article  MATH  Google Scholar 

  • de Carvalho FdAT, Csernel M, Lechevallier Y (2009) Clustering constrained symbolic data. Pattern Recognit Lett 30(11):1037–1045

    Article  Google Scholar 

  • de Souza RMCR, de Carvalho FdAT (2004) Clustering of interval data based on city-block distances. Pattern Recognit Lett 25(3):353–365

    Article  Google Scholar 

  • Cazes P, Chouakria A, Diday E, Schektrman Y (1997) Entension de l’analyse en composantes principales à des données de type intervalle. Revue Stat Appl 45(3):5–24

    Google Scholar 

  • Coppi R, D’Urso P, Giordani P (2012) Fuzzy and possibilistic clustering for fuzzy data. Comput Stat Data Anal 56(4):915–927

    Article  MATH  MathSciNet  Google Scholar 

  • D’Urso P, De Giovanni L (2011) Midpoint radius self-organizing maps for interval-valued data with telecommunications application. Appl Soft Comput 11(5):3877–3886

    Article  Google Scholar 

  • D’Urso P, Giordani P (2004) A least squares approach to principal component analysis for interval valued data. Chemom Intell Lab Syst 70(2):179–192

    Article  Google Scholar 

  • D’Urso P, Giordani P (2006a) A weighted fuzzy \(c\)-means clustering model for fuzzy data. Comput Stat Data Anal 50(6):1496–1523

    Article  MATH  MathSciNet  Google Scholar 

  • D’Urso P, Giordani P (2006b) A robust fuzzy k-means clustering model for interval valued data. Comput Stat 21(2):251–269

    Article  MATH  MathSciNet  Google Scholar 

  • D’Urso P, De Giovanni L, Massari R (2014) Self-organizing maps for imprecise data. Fuzzy Sets Syst 237(16):63–89

    Article  Google Scholar 

  • El-Sonbaty Y, Ismail MA (1998) Fuzzy clustering for symbolic data. IEEE Trans Fuzzy Syst 6(2):195–204

    Article  Google Scholar 

  • Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold Press, London

    MATH  Google Scholar 

  • Fu KS (1977) Syntactic pattern recognition, applications. Springer, New York

  • García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am Stat Assoc 94(447):956–969

    MATH  Google Scholar 

  • García-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22(2):185–201

    Article  Google Scholar 

  • García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2010) A review of robust clustering methods. Adv Data Anal Classif 4(2):89–109

    Article  MATH  MathSciNet  Google Scholar 

  • Gowda K, Ravi T (1995) Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognit Lett 16(6):647–652

    Article  Google Scholar 

  • Guru DS, Kiranagi BB, Nagabhushan P (2004) Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognit Lett 25(10):1203–1213

    Article  Google Scholar 

  • Heiser WJ, Groenen PJF (1997) Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika 62(1):63–83

    Article  MATH  MathSciNet  Google Scholar 

  • Ichino M, Yaguchi H (1994) Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Trans Syst Man Cybern 24(4):698–708

    Article  MathSciNet  Google Scholar 

  • Jeng JT, Chuang CC, Tseng CC, Juan CJ (2010) Robust interval competitive agglomeration clustering algorithm with outliers. Int J Fuzzy Syst 12(3):227–236

    Google Scholar 

  • Kamdar T, Joshi A (2000) On creating adaptive Web servers using Weblog Mining. Technical Report TR-CS-00-05, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County

  • Katona Z, Zubcsek PP, Sarvary M (2011) Network effects and personal influences: the diffusion of an online social network. J Mark Res 48(3):425–443

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1987) Clustering by means of medoids. In: Dodge Y (ed) Statistical data analysis based on the L1-norm and related methods. North-Holland, Amsterdam, pp 405–416

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

  • Kim J, Krishnapuram R, Davé R (1996) Application of the least trimmed squares technique to prototype-based clustering. Pattern Recognit Lett 17(6):633–641

    Article  Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: IEEE international fuzzy systems conference (FUZZIEEE99), vol 3, IEEE, Seoul, pp 1281–1286

  • Krishnapuram R, Joshi A, Nasraoui O, Yi L (2001) Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Trans Fuzzy Syst 9(4):595–607

    Article  Google Scholar 

  • Masson MH, Denœux T (2004) Clustering interval-valued proximity data using belief functions. Pattern Recognit Lett 25(2):163–171

    Article  Google Scholar 

  • McBratney AB, Moore AW (1985) Application of fuzzy sets to climatic classification. Agric For Meteorol 35(1):165–185

    Article  Google Scholar 

  • Palmer A, Koenig-Lewis N (2009) An experiential, social network-based approach to direct marketing. Direct Mark Int J 3(3):162–176

    Article  Google Scholar 

  • Qualman E (2012) Socialnomics: How social media transforms the way we live and do business. Wiley, New Jersey

    Google Scholar 

  • Runkler T, Bezdek J (1999) Alternating cluster estimation: a new tool for clustering and function approximation. IEEE Trans Fuzzy Syst 7(4):377–393

    Article  Google Scholar 

  • Vinod HD (1969) Integer programming and the theory of grouping. J Am Stat Assoc 64(326):506–519

    Article  MATH  Google Scholar 

  • Webb Young J, Burgoyne B (2009) You’ve got a friend: measuring the value of brand friending on social networks. In: Market research study annual conference, Market Research Study

  • Wedel M, Kamakura WA (1998) Market segmentation: conceptual and methodological foundations. Kluwer Academic, Boston

    Google Scholar 

Download references

Acknowledgments

The authors thank the editors and the three referees for their useful comments and suggestions which helped to improve the quality and presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo D’Urso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Urso, P., De Giovanni, L. & Massari, R. Trimmed fuzzy clustering for interval-valued data. Adv Data Anal Classif 9, 21–40 (2015). https://doi.org/10.1007/s11634-014-0169-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-014-0169-3

Keywords

Mathematics Subject Classification

Navigation