Skip to main content
Log in

Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Parameter estimation for model-based clustering using a finite mixture of normal inverse Gaussian (NIG) distributions is achieved through variational Bayes approximations. Univariate NIG mixtures and multivariate NIG mixtures are considered. The use of variational Bayes approximations here is a substantial departure from the traditional EM approach and alleviates some of the associated computational complexities and uncertainties. Our variational algorithm is applied to simulated and real data. The paper concludes with discussion and suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover Press, New York

    MATH  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, vol 1. Springer, Berlin, pp 267–281

  • Andrews JL, McNicholas PD (2011) Extending mixtures of multivariate t-factor analyzers. Stat Comput 21(3):361–373

    Article  MathSciNet  Google Scholar 

  • Andrews JL, McNicholas PD (2012) Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions. Stat Comput 22(5):1021–1029

    Article  MATH  MathSciNet  Google Scholar 

  • Andrews JL, McNicholas PD, Subedi S (2011) Model-based classification via mixtures of multivariate t-distributions. Comput Stat Data Anal 55:520–529

    Article  MATH  MathSciNet  Google Scholar 

  • Baek J, McLachlan GJ (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics 27:1269–1276

    Article  Google Scholar 

  • Baek J, McLachlan GJ, Flack LK (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data. IEEE Trans Pattern Anal Mach Intell 32(7):1298–1309

    Article  Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24(1):1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41:164–171

    Article  MATH  MathSciNet  Google Scholar 

  • Beal MJ (2003) Variational algorithms for approximate Bayesian inference. PhD thesis, University of London

  • Bechtel Y, Bonaiti-Pellie C, Poisson N, Magnette J, Bechtel P (1993) A population and family study of \(N\)-acetyltransferase using caffeine urinary metabolites. Clin Pharmacol Ther 54(2):134–141

    Article  Google Scholar 

  • Bouveyron C, Girard S, Schmid C (2007) High-dimensional data clustering. Comput Stat Data Anal 52(1):502–519

    Article  MATH  MathSciNet  Google Scholar 

  • Browne RP, McNicholas PD, Sparling MD (2012) Model-based learning using a mixture of mixtures of Gaussian and uniform distributions. IEEE Trans Pattern Anal Machine Intell 34(4):814–817

    Article  Google Scholar 

  • Celeux G, Govaert G (1995) Gaussian parsimonious clustering models. Pattern Recognit 28:781–793

    Article  Google Scholar 

  • Chhikara RS, Folks JL (1989) The Inverse Gaussian Distribution: Theory, Methodology, and Applications, Statistics: Textbooks and Monographs, vol 95. Marcel Dekker Inc, New York

    Google Scholar 

  • Corduneanu A, Bishop CM (2001) Variational Bayesian model selection for mixture distributions. Artificial Intelligence and Statistics. Morgan Kaufmann, Los Altos, pp 27–34

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631

    Article  MATH  MathSciNet  Google Scholar 

  • Franczak BC, Browne RP, McNicholas PD (2012) Mixtures of shifted asymmetric Laplace distributions. arXiv:1207.1727v3

  • Ghahramani Z, Hinton GE (1997) The EM algorithm for factor analyzers. Tech. Rep. CRG-TR-96-1, University of Toronto, Toronto

  • Hastie T, Tibshirani R (1996) Discriminant analysis by Gaussian mixtures. J R Stat Soc Ser B 58(1):155–176

    MATH  MathSciNet  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37:183–233

    Article  MATH  Google Scholar 

  • Jørgensen B (1982) Statistical Properties of the Generalized Inverse Gaussian Distribution, vol 21. Springer, New York

    Book  Google Scholar 

  • Karlis D, Lillestol J (2004) Bayesian estimation of NIG models via Markov chain Monte Carlo methods. Appl Stoch Models Business Ind 20:323–338

    Article  MATH  MathSciNet  Google Scholar 

  • Karlis D, Santourian A (2009) Model-based clustering with non-elliptically contoured distributions. Stat Comput 19(1):73–83

    Article  MathSciNet  Google Scholar 

  • Lee SX, McLachlan GJ (2013) On mixtures of skew normal and skew t-distributions. Adv Data Anal Classif 7(3):241–266

    Article  MATH  MathSciNet  Google Scholar 

  • Lillestol J (2000) Risk analysis and the NIG distribution. J Risk 2:41–56

    Google Scholar 

  • Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivariate Anal 100:257–265

    Article  MATH  MathSciNet  Google Scholar 

  • Lin TI (2010) Robust mixture modeling using multivariate skew t distributions. Stat Comput 20:343–356

    Article  MathSciNet  Google Scholar 

  • McGrory CA, Titterington DM (2007) Variational approximations in Bayesian model selection for finite mixture distributions. Comput Stat Data Anal 51:5352–5367

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan GJ, Peel D (2000) Mixtures of factor analyzers. Proceedings of the seventh international conference on machine learning. Morgan Kaufmann, San Francisco, pp 599–606

    Google Scholar 

  • McNicholas PD (2010) Model-based classification using latent Gaussian mixture models. J Stat Plan Infer 140(5):1175–1181

    Article  MATH  MathSciNet  Google Scholar 

  • McNicholas PD, Murphy TB (2008) Parsimonious Gaussian mixture models. Stat Comput 18:285–296

    Article  MathSciNet  Google Scholar 

  • McNicholas PD, Murphy TB (2010) Model-based clustering of longitudinal data. Can J Stat 38(1):153–168

    MATH  MathSciNet  Google Scholar 

  • McNicholas PD, Subedi S (2012) Clustering gene expression time course data using mixtures of multivariate t-distributions. J Stat Plan Infer 142(5):1114–1127

    Article  MATH  MathSciNet  Google Scholar 

  • McNicholas PD, Murphy TB, McDaid AF, Frost D (2010) Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Comput Stat Data Anal 54(3):711–723

    Article  MATH  MathSciNet  Google Scholar 

  • Morris K, McNicholas PD (2013a) Dimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributions. Stat Probab Lett 83(9):2088–2093

    Article  MATH  MathSciNet  Google Scholar 

  • Morris K, McNicholas PD (2013b) Non-Gaussian mixtures for dimension reduction, clustering, classification, and discriminant analysis. arXiv:1308.6315

  • Morris K, McNicholas PD, Scrucca L (2013) Dimension reduction for model-based clustering via mixtures of multivariate t-distributions. Adv Data Anal Classif 7(3):321–338

    Article  MATH  MathSciNet  Google Scholar 

  • Murray PM, Browne RP, McNicholas PD (2013a) Mixtures of skew-\(t\) factor analyzers. arXiv:1305.4301v2

  • Murray PM, McNicholas PD, Browne RP (2013b) Mixtures of common skew-\(t\) factor analyzers. arXiv:1307.5558v2

  • Orchard T, Woodbury MA (1972) A missing information principle: theory and applications. In: Le Cam LM, Neyman J, Scott EL (eds) Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, vol 1., Theory of StatisticsUniversity of California Press, Berkeley, pp 697–715

    Google Scholar 

  • Punzo A, McNicholas PD (2013) Outlier detection via parsimonious mixtures of contaminated Gaussian distributions. arXiv:1305.4669

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  • Seshadri V (1993) The inverse Gaussian distribution: a case study in exponential families. Oxford University Press, New York

    Google Scholar 

  • Steane MA, McNicholas PD, Yada R (2012) Model-based classification via mixtures of multivariate t-factor analyzers. Commun Stat 41(4):510–523

    Article  MATH  MathSciNet  Google Scholar 

  • Sundberg R (1974) Maximum likelihood theory for incomplete data from an exponential family. Scand J Stat 1:49–58

    MATH  MathSciNet  Google Scholar 

  • Teschendorff A, Wang Y, Barbosa-Morais N, Brenton J, Caldas C (2005) A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 21(13):3025–3033

    Article  Google Scholar 

  • Titterington DM, Smith AFM, Makov UE (1985) Statistical Analysis of Finite Mixture Distributions. Wiley, Chichester

    MATH  Google Scholar 

  • Todorov V, Filzmoser P (2009) An object-oriented framework for robust multivariate analysis. J Stat Softw 32(3):1–47

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Vrbik I, McNicholas PD (2012) Analytic calculations for the EM algorithm for multivariate skew-t mixture models. Stat Probab Lett 82(6):1169–1174

    Article  MATH  MathSciNet  Google Scholar 

  • Vrbik I, McNicholas PD (2014) Parsimonious skew mixture models for model-based clustering and classification. Comput Stat Data Anal 71:196–210

    Article  MathSciNet  Google Scholar 

  • Waterhouse S, MacKay D, Robinson T (1996) Bayesian methods for mixture of experts. In: Advances in neural information processing systems, vol 8. MIT Press, Cambridge

  • Wolfe JH (1963) Object cluster analysis of social areas. Master’s thesis, University of California, Berkeley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeena Subedi.

Additional information

This work was supported by a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada, an Early Researcher Award from the Ontario Ministry of Research and Innovation, and the University Research Chair in Computational Statistics. The authors gratefully acknowledge the very helpful comments of three anonymous reviewers and a guest editor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subedi, S., McNicholas, P.D. Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions. Adv Data Anal Classif 8, 167–193 (2014). https://doi.org/10.1007/s11634-014-0165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-014-0165-7

Keywords

Mathematics Subject Classification

Navigation