Skip to main content
Log in

A study on the interaction between ferric ion and silicic acid in hydrosphere: Si-containing ferruginous deposits formed in neutral hot spring waters

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Five ferruginous deposit samples formed from neutral hot springs were analyzed to determine whether they consisted of a mixture of silica, hydrous iron oxide or iron silicate by differential thermal analysis (DTA), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), and 57Fe Mössbauer spectroscopy. The Si/Fe atomic ratios of the deposits ranged from 0.25 to 0.45, and were smaller than those of hisingerite (1–2), but apparently close to those of siliceous ferrihydrite (0.25–0.5). Si was confirmed to be present as monomeric or oligomeric silicate from the Si-O stretching vibration frequencies on the IR spectra. Judging from the results of DTA, which minerals starting to produce after heating, and a relationship between Si-O stretching vibration frequency and Si/Fe atomic ratio proposed by Henmi et al. (1981), all the deposits in this study were concluded to be mixtures of various siliceous ferrihydrites with low and high Si/Fe atomic ratios. Moreover, by comparing the chemical properties of hot spring waters, the formation conditions of siliceous ferrihydrite were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bigham J.M., Schwertmann U., Carlson L., and Murad E. (1990) A poorly crystallized oxohydroxysulfate of iron formed by bacterial oxidation of Fe (II) in acidic mine waters [J]. Geochim. et Cosmochim. Acta. 54, 2743–2758.

    Article  Google Scholar 

  • Bibi I., Singh B., and Silvester (2007) Akaganeite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia [J]. Geochim. et Cosmochim. Acta. 75, 6429–6438.

    Article  Google Scholar 

  • Bruno J., Stumm W., Wersin P., and Brandberg F. (1992a) On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C [J]. Geochim. et Cosmochim. Acta. 56, 1139–1147.

    Article  Google Scholar 

  • Bruno J., Wersin P., and Stumm W. (1992b) On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3(s) at 25°C and 1 atm total pressure [J]. Geochim. et Cosmochim. Acta. 56, 1149–1155.

    Article  Google Scholar 

  • Carlson L. and Schwertmann U. (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica [J]. Geochim. et Cosmochim. Acta. 45, 421–425.

    Article  Google Scholar 

  • Childs C.W. and Johnston J.H. (1980) Mossbauer-spectra of proto-ferrihydrite at 77-K and 295-K, and a reappraisal of the possible presence of akaganeite in New-Zealand soils [J]. Aust. J. Soil. Res. 18, 245–250.

    Article  Google Scholar 

  • Childs C.W., Downes C.J., and Wells N. (1982) Hydrous iron oxide minerals with short range order deposites in a spring/stream system, Tongariro National Park, New Zealand [J]. Aust. J. Soil. Res. 20, 119–129.

    Article  Google Scholar 

  • Childs C.W., Wells N., and Downes C.J. (1986) Kokowai Springs, Mount Egmont, New Zealand: Chemistry and mineralogy of the ochre (ferrihydrite) deposit and analysis of the water [J]. J. R. Soc. NZ. 16, 85–99.

    Article  Google Scholar 

  • Childs C.W., Matsue N., and Yoshinaga N. (1990) Ferrihydrite deposits in paddy races, Aso-Dani [J]. Clay Sci. 8, 9–15.

    Google Scholar 

  • Cismasu A.C., Michel F.M., Tcaciuc A.P., Tyliszczak T., and Brown G.E. (2011) Composition and structural aspects of naturally occurring ferrihydrite [J]. C. R. Geoscience. 343, 210–218.

    Article  Google Scholar 

  • Cornell R.M. and Schwertmann U. (1996) The Iron Oxides. [M]. John Wiley & Sons, New York.

    Google Scholar 

  • Davis C.C., Knocke W.R., and Edwards M. (2001) Implications of aqueous silica sorption to iron hydroxide: Mobilization of eron colloids and interference with sorption of arsenate and humic substances [J]. Environ. Sci. Technol. 35, 3158–3162.

    Article  Google Scholar 

  • Deliyanni E.A., Bakoyannakis D.N., and Matis Z.K.A. (2003) Sorption of As(V) ions by akaganeite-type nanocrystals [J]. Chemosphere. 50, 155–163.

    Article  Google Scholar 

  • Doelsch E., Masion A., Bottero J.Y., Nahon D., and Bertsch P.M. (2000) Speciation and crystal chemistry of iron(III) chloride hydrolyzed in the presence of SiO4 ligands 1. An Fe K-edge EXAFS study [J]. Langmuir. 16, 4726–4731.

    Article  Google Scholar 

  • Eggleton R.A., Pennington J.H., Freeman R.S., and Threadgold I.M. (1993) Structural aspects of the hisingerite-neotocite series [J]. Clay Miner. 18, 21–31.

    Article  Google Scholar 

  • Farmer V.C. (1992) Possible confusion between so-called ferrihydrites and hisingerites [J]. Clay Miner. 27, 373–378.

    Article  Google Scholar 

  • Fukushi K., Sato T., Yanase N., Minato J., and Yamada H. (2004) Arsenate sorption on schwertmannite [J]. Am. Mineral. 89, 1728–1734.

    Google Scholar 

  • Gallup D.L. and Reiff W.M. (1991) Characterization of geothermal scale deposits by Fe-57 Mössbauer spectroscopy and complementary X-ray diffraction and infra-red studies [J]. Geothermics. 20, 207–224.

    Article  Google Scholar 

  • Harder H. and Flemig W. (1970) Quarzsynthese bei tiefen Tempereturen [J]. Geochim. et Cosmochim. Acta. 34, 295–305.

    Article  Google Scholar 

  • Henmi T., Wells N., Childs C.W., and Parfitt R.L. (1980) Poorly-ordered iron-rich precipitates from springs and streams on andestic volcanoes [J]. Geochim. et Cosmochim. Acta. 44, 365–372.

    Article  Google Scholar 

  • Kaji H. and Tarutani T. (1983) Synthesis of amorphous hydrous iron silicate and its properties [J]. Mem Fac Sci Kyushu. Univ. Ser. C. 41, 117–122.

    Google Scholar 

  • King D.W. (1998) Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems [J]. Environ. Sci. Technol. 32, 2997–3003.

    Article  Google Scholar 

  • Kwon S.K., Shinoda K., Suzuki S., and Waseda Y. (2007) Influence of silicon on local structure and morphology of [gammna]-FeOOH and [alpha]-FeOOH particles [J]. Corrosion. Science. 49, 1513–1526.

    Article  Google Scholar 

  • Lazaridis N.K., Bakoyannakis D.N., and Deliyanni E.A. (2005) Chromium( VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite [J]. Chemosphere. 58, 65–73.

    Article  Google Scholar 

  • Mackenzie K.J.D. and Berezowsk R.M. (1980) Thermal and Mossbauer studies of iron-containing hydrous silicates. II. Hisingerite [J]. Thermochimica Acta. 41, 335–355.

    Article  Google Scholar 

  • Manceau A., Ildefonse P.h., Hazemann J.L., Flank A.M., and Gallup D.L. (1995) Crystal chemistry of hydrous iron silicate scale deposits at the Salton Sea geothermal field [J]. Clays and Clay Miner. 43, 304–317.

    Article  Google Scholar 

  • Ossaka J. (1969) Studies on formation environment of deposit minerals in volcanic springs and synthesis of their minerals [J]. Kobutsugaku. Zasshi. 8, 16–24.

    Google Scholar 

  • Parfitt R.L., Gaast S.J.V.D., and Chiles C.W. (1992) Astructural model for anatura siliceous ferrihydrite [J]. Clays and Clay Miner. 40, 675–681.

    Article  Google Scholar 

  • Pokrovski G.S., Shott J., Farges F., and Hazemann J.L. (2003) Iron(III)-silica interactions in aqueous solution: Insights from X-ray absorption fine structure spectroscopy [J]. Geochim. et Cosmochim. Acta. 67, 3559–3573.

    Article  Google Scholar 

  • Regenspurg S., Brand A., and Peiffer S. (2004) Formation and stability of schwertmannite in acidic mining lakes [J]. Geochim. et Cosmochim. Acta. 68, 1185–1197.

    Article  Google Scholar 

  • Regenspurg S. and Peiffer S. (2005) Arsenate and Chromate incorporation in schwertmannite [J]. Applied Geochemistry. 20, 1226–1239.

    Article  Google Scholar 

  • Remazeilles C. and Refait P.h. (2007) On the formation of β-FeOOH (akaganeite) in chloride-containing environments [J]. Corrosion. Science. 49, 844–859.

    Article  Google Scholar 

  • Schwertmann U. and Fechter H. (1982) The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate [J]. Clay Minerals. 17, 471–476.

    Article  Google Scholar 

  • Sjoberg S. (1996) Silica in aqueous environments [J]. J. Non-Crystalline Solids. 196, 51–57.

    Article  Google Scholar 

  • Soma M., Seyama H., Yoshinaga N., Theng B.K.G., and Childs C.W. (1996) Bonding state of silicon in natural ferrihydrites by X-ray photoelectron spectroscopy [J]. Clay Sci. 9, 385–391.

    Google Scholar 

  • Sudo T. and Nakamura T. (1952) Hisingerite from Japan [J]. Am. Mineral. 37, 618–621.

    Google Scholar 

  • Swedlund P. and Webster J.G. (1999) Adsorption and polymerization of silicic acid of ferrihydrite, and its effect on arsenic adsorption [J]. Water Res. 33, 3413–3422.

    Article  Google Scholar 

  • Swedlund P.J., Miskelly G.M., and McQuillan A.J. (2009) An attenuated total reflectance IR study of silicic acid adsorbed onto a ferric oxyhydroxide surface [J]. Geochim. et Cosmochim. Acta. 73, 4199–4214.

    Article  Google Scholar 

  • Swedlund P.J., Sivaloganathan S., Miskelly G.M., and Waterhouse I.N.G. (2011) Assessing the role of silicate polymerization on metal oxyhydroxide surfaces using X-ray photoelectron spectroscopy [J]. Chem. Geol. 285, 62–69.

    Article  Google Scholar 

  • Wada S. and Ueno N. (2001) Effect of monosilicic acid on hydrolytic polymerization of Fe(III) and structure of hydrolytic product [J]. Soil. Sci. Plant. Nutr. 47, 727–735.

    Article  Google Scholar 

  • Wada K. (1982) Amorphous Clay Minerals-Chemical Composition, Crystalline State, Synthesis, And Surface Properties (eds. Olphen H.V. and Veniale F.) [M]. pp.385–398. Amsterdam.

  • Yokoyama T. and Tarutani T. (1979) Silica in ferruginous deposits [J]. Onsen Kagaku. 30, 75–83.

    Google Scholar 

  • Yokoyama T., Sato Y., Maeda Y., Tarutani T., and Itoi R. (1993) Siliceous deposits formed from eothermal water. I. The major constituents and the existing states of iron and aluminium [J]. Geochem. J. 27, 375–384.

    Google Scholar 

  • Yokoyama T., Nakazato T., and Tarutani T. (1980) Polymerization of silicic acid adsorbed on iron (III) hydroxide [J]. Bull. Chem. Soc. Jpn. 53, 850–853.

    Article  Google Scholar 

  • Yokoyama T., Shimono T., and Tarutani T. (1984) Study on the polymerization of silicic acid adsorbed on iron(III) hydroxide by trimethylsilylation-gas chromatography [J]. Bull. Chem. Soc. Jpn. 57, 2315–2316.

    Article  Google Scholar 

  • Yu J.Y., Heo B., Choi I.K., Cho J.P., and Chang H.W. (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage [J]. Geochim. et Cosmochim. Acta. 63, 3407–3416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takushi Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naren, G., Miyazaki, A., Matsuo, M. et al. A study on the interaction between ferric ion and silicic acid in hydrosphere: Si-containing ferruginous deposits formed in neutral hot spring waters. Chin. J. Geochem. 32, 27–34 (2013). https://doi.org/10.1007/s11631-013-0603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-013-0603-9

Key words

Navigation