Skip to main content
Log in

Inter- and intra-seasonal effects of temperature variation on radial growth of alpine treeline Norway spruce

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

A widely accepted standpoint contends that plant growth near the cold edge of the species range, such as treelines, does not depend on the annual temperature seasonality (i.e. difference between maximum and minimum temperature values) but rather on the warmth of summer season. In contrast to this expectation, we show that the growth of treeline Norway spruce (Picea abies) is well explained by temperature seasonality as a single climatic determinant. To do so, the tree-ring data of spruce trees growing on alpine treeline in Lapland was compared with long climate records. Biennial time-series of temperature seasonality capture both the decadal and abrupt growth fluctuations with a correlation coefficient of r = 0.601. We also show that the archetypal association between summer temperature and treeline tree growth may in fact be by far a more complex relationship than previously thought. Spruce growth appears responsive to late- June (r = 0.494) and mid-July (r = 0.310) temperatures but unresponsive to temperatures during the early July, that is, during the grand period of the tracheid formation. Climatic warming may enhance the treeline spruce growth unless the warming is concentrated on unresponsive interval in the midst of the growing season. Water relations did not play significant role as agents of P. abies growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreassen K, Solberg S, Tveito OE, Lystad SL (2006) Regional differences in climatic responses of Norway spruce (Picea abies L. Karst.) growth in Norway. Forest Ecology and Management 222: 211–221. DOI: 10.1016/j.foreco.2005.10.029

    Article  Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15: 139–150.

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in treering chronologies. Computers & Geosciences 30: 303–311. DOI: 10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. San Francisco: Holden-Day. p 553.

    Google Scholar 

  • Briffa K, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds.), Methods of dendrochronology: applications in the environmental sciences. Dordrecht: Kluwer Academic Publishers. pp 137–152

    Google Scholar 

  • Briffa KR, Jones PD, Bartholin TS, et al. (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7: 111–119. DOI: 10.1007/bf00211153

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, et al. (1996) Tree-ring variables as proxy-climate indicators: problems with lowfrequency signals. In: Jones PD, Bradley RS, Jouzel J (eds.), Climate Variations and Forcings Mechanisms of the Last 2000 Years. Berlin: Springer-Verlag. pp 9–41. DOI: 10.1007/978-3-642-61113-1_2

    Chapter  Google Scholar 

  • Büntgen U, Frank DC, Schmidhalter M, et al. (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees 20: 99–110. DOI: 10.1007/s00468-005-0017-3

    Article  Google Scholar 

  • Cook ER (1985) A time-series analysis approach to tree-ring standardization. PhD thesis, University of Arizona, Tucson.

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45–53.

    Google Scholar 

  • Cook E, Briffa K, Shiyatov S, Mazepa V (1990a) Tree-Ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds.), Methods of dendrochronology: applications in the environmental sciences. Dordrecht: Kluwer Academic Publishers. pp 104–123.

    Chapter  Google Scholar 

  • Cook E, Shiyatov S, Mazepa V (1990b) Estimation of the mean chronology. In: Cook ER, Kairiukstis LA (eds.), Methods of dendrochronology: applications in the environmental sciences. Dordrecht, Kluwer Academic Publishers. pp 123–132.

    Chapter  Google Scholar 

  • Crawford RMM, Jeffree CE (2007) Northern climates and woody plant distribution. In: Ørbæk JB, Kallenborn R, Tombre I, et al. (eds.), Arctic Alpine ecosystems and people in a changing environment. Berlin, Heidelberg: Springer-Verlag. pp 85–104. DOI: 10.1007/978-3-540-48514-8_6

    Chapter  Google Scholar 

  • D’Arrigo R, Davi N, Jacoby G, et al. (2014) Dendroclimatic Studies: Tree Growth and Climate Change in Northern Forests. John Wiley & Sons, Hoboken, New Jersey, USA. p 80.

    Google Scholar 

  • Dye D, Tucker CJ (2003) Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophysical Research Letters 30: 1405. DOI: 10.1029/2002 GL016384.

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Annals of Botany 90: 537–544. DOI: 10.1093/aob/mcf222

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? Aglobal meta-analysis of treeline response to climate warming. Ecology Letters 12: 1040–1049. DOI: 10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Helama S, Läänelaid A, Tietäväinen H, et al. (2010) Late Holocene climatic variability reconstructed from incremental data from pines and pearl mussels–a multi-proxy comparison of air and subsurface temperatures. Boreas 39: 734–748. DOI: 10.1111/j.1502-3885.2010.00165.x

    Article  Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology 79: 239–254. DOI: 10.1007/s00704-004-0077-0

    Article  Google Scholar 

  • Hämet-Ahti L, Ruuhijärvi R, Suominen J (1988) Vegetation and flora. In: Alalammi P (ed.), Atlas of Finland. Biogeography, Nature Conservation. Helsinkin: National Board of Survey, Geographical Society of Finland, Helsinki. pp 1–10.

    Google Scholar 

  • Henttonen H (1984) The dependence of annual ring indices on some climatic factors. Acta Forestalia Fennica 186: 1–38.

    Google Scholar 

  • Henttonen HM, Mäkinen H, Nöjd P (2009) Seasonal dynamics of wood formation of Scots pine and Norway spruce in southern and central Finland. Canadian Journal of Forest Research 39: 606–618. DOI: 10.1139/x08-203

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in treering dating and measurement. Tree-Ring Bulletin 43: 69–75.

    Google Scholar 

  • Jones PD, Briffa KR, Osborn TJ (2003) Changes in the Northern Hemisphere annual cycle: Implications for paleoclimatology? Journal of Geophysical Research 108: 4588. DOI: 10.1029/2003JD003695.

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, et al. (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research 117: D05127. DOI: 10.1029/2011 JD017139

    Google Scholar 

  • Jonsson B (1969) Studier över den av väderleken orsakade variationen i årsringsbredderna hos tall och gran i Sverige. The Royal College of Forestry, Department of Forest Yield Research, Research notes 16: 1–297.

    Google Scholar 

  • Jyske T, Mäkinen H, Kalliokoski T, Nöjd T (2014) Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland. Agricultural and Forest Meteorology 194: 241–254. DOI: 10.1016/j.agrformet.2014.04.015

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. London: Academic. p 567.

    Google Scholar 

  • Lavoie C, Payette S (1992) Black Spruce Growth Forms as a Record of a Changing Winter Environment at Treeline, Quebec, Canada. Arctic and Alpine Research 24: 40–49. DOI: 10.2307/1551318

    Article  Google Scholar 

  • Macias-Fauria M, Grinsted A, Helama S, Holopainen J (2012) Persistence matters: estimation of the statistical significance of paleoclimatic reconstruction statistics from autocorrelated time series. Dendrochronologia 30: 179–187. DOI: 10.1016/j.dendro.2011.08.003

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Mielikäinen K (2000) Climatic signal in annual growth variation of Norway spruce (Picea abies) along a transect from central Finland to the Arctic timberline. Canadian Journal of Forest Research 30: 769–777. DOI: 10.1139/x00-005

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce (Picea abies (L.) Karst.) in southern Finland. Trees 15:177–185. DOI: 10.1007/s004680100089

    Article  Google Scholar 

  • Mäkinen H, Nöjd P, Saranpää P (2003) Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology 23: 959–968. DOI: 10.1093/treephys/23.14.959

    Article  Google Scholar 

  • Mann ME, Park J (1996) Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophysical Research Letters 23:1111–1114. DOI: 10.1029/96gl01066

    Article  Google Scholar 

  • Melvin TM (2004) Historical growth rates and changing climatic sensitivity of boreal conifers. PhD thesis, University of East Anglia, UK.

    Google Scholar 

  • Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26: 71–86. DOI: 10.1016/j.dendro.2007.12.001

    Article  Google Scholar 

  • Miina J (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecological Modelling 132: 259–273. DOI: 10.1016/s0304-3800(00)00296-9

    Article  Google Scholar 

  • Mikkonen S, Laine M, Mäkelä HM, et al. (2015) Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment 29: 1521–1529. DOI: 10.1007/s00477-014-0992-2

    Article  Google Scholar 

  • Moen A (1999) National Atlas of Norway—Vegetation. Hønefoss: Norwegian mapping authority. p 200.

    Google Scholar 

  • Monserud RA (1986) Time-series analyses of tree-ring chronologies. Forest Science 32: 349–372.

    Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alpine Botany 124: 1–12. DOI: 10.1007/s00035-014-0124-0

    Article  Google Scholar 

  • Rickebusch S, Lischke H, Bugmann H, et al. (2007) Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with tree-ring data. Forest Ecology and Management 246: 251–263. DOI: 10.1016/j.foreco.2007.04.030

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152: 1–12. DOI: 10.1007/s00442-006-0625-7

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, et al. (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytology 170: 301–310. DOI: 10.1111/j.1469-8137.2006.01660.x

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Gricar J, et al. (2008) Critical temperatures for xylogenesis in conifers of cold climates. Global Ecolgy and Biogeography 17: 696–707. DOI: 10.1111/j.1466-8238.2008.00417.x

    Article  Google Scholar 

  • Schwörer C, Henne PD, Tinner W (2014) A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Global Change Biology 20: 1512–1526. DOI: 10.1111/gcb.12456

    Article  Google Scholar 

  • Skre O, Nes K (1996) Combined effects of elevated winter temperatures and CO2 on Norway spruce seedlings. Silva Fennica 30: 135–143. DOI: 10.14214/sf.a9226

    Article  Google Scholar 

  • Sutinen R, Kuoppamaa M, Hyvönen E, et al. (2007) Geological controls on conifer distributions and their implications for forest management in Finnish Lapland. Scandinavian Journal of Forest Research 22:476–487. DOI: 10.1080/0282758070 1672063

    Article  Google Scholar 

  • Sutinen R, Närhi P, Middleton M, et al. (2012) Advance of Norway spruce (Picea abies) onto mafic Lommoltunturi fell in Finnish Lapland during the last 200 years. Boreas 41: 367–378. DOI: 10.1111/j.1502-3885.2011.00238.x

    Article  Google Scholar 

  • Vajda A, Venäläinen A, Hänninen P, Sutinen R (2006) Effect of vegetation on snow cover at the northern forest line: a case study in Finnish Lapland. Silva Fennica 40: 195–207. DOI: 10.14214/sf.338

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213. DOI: 10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10: 1724–1736. DOI: 10.1111/j.1365-2486.2004.00826.x

    Article  Google Scholar 

  • Wilson R, Elling W (2004) Temporal instability in treegrowth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees 18:19–28. DOI: 10.1007/s00468-003-0273-z

    Article  Google Scholar 

  • Worrall J (1970) Interrelationships among some phenological and wood property variables in Norway spruce. Tappi 53: 58–63.

    Google Scholar 

  • Worrall J (1973) Seasonal, daily, and hourly growth of height and radius in Norway spruce. Canadian Journal of Forest Research 3: 501–511. DOI: 0.1139/x73-074

    Article  Google Scholar 

  • Xu L, Myneni RB, Chapin FS, et al. (2013) Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3:581–586. DOI: 10.1038/nclimate 1836

    Google Scholar 

  • Zimmermann NE, Jandl R, Hanewinkel M, et al. (2013) Potential future ranges of tree species in the Alps. In: Cerbu GA, Hanewinkel M, Gerosa G, Jandl R (eds.), Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. InTech, Rijeka, Croatia. pp 37–48. DOI: 10.5772/56279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuli Helama or Raimo Sutinen.

Additional information

http://orcid.org/0000-0002-9777-3354

http://orcid.org/0000-0002-0701-9682

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helama, S., Sutinen, R. Inter- and intra-seasonal effects of temperature variation on radial growth of alpine treeline Norway spruce. J. Mt. Sci. 13, 1–12 (2016). https://doi.org/10.1007/s11629-015-3665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3665-9

Keywords

Navigation