Skip to main content
Log in

Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau, China. We explored whether the plant composition of different functional groups affects the manner in which species richness increases with increasing area at scales ≤ 1.0 m2. We also compared species richness (S) within and across forbs, legumes, sedges and grasses, with sampling subplot area (A) increasing from 0.0625 m2 to 1.0 m2 between alpine meadow and steppe communities. We applied a logarithmic function (S = b 0 + b 1 ln A) to determine the slope and intercept of SAR curves within and across functional groups. The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales. Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups (P < 0.05). Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when all functional groups’ data were pooled together. Our results indicated that the different SAR patterns should be linked with species dispersal capabilities, environmental filtering, and life form composition within alpine grassland communities. Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrhenius O (1921) Species and area. Journal of. Ecology 9: 95–99.

    Article  Google Scholar 

  • Auerbach M, Shmida A (1987) Spatial scale and the determinants of plant species richness. Trends in Ecology and. Evolution 2: 238–242. DOI: 10.1016/0169-5347(87)90005-X

    Google Scholar 

  • Barnett DT, Stohlgren TJ (2003) A nested-intensity design for surveying plant diversity. Biodiversity and Conservation 12: 255–278. DOI: 10.1023/A:1021939010065

    Article  Google Scholar 

  • Bell G (2001) Ecology -Neutral macroecology.. Science 293: 2413–2418. DOI: 10.1126/science.293.5539.2413

    Article  Google Scholar 

  • Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology. Letters 16: 1234–1244. DOI: 10.1111/ele.12161

    Google Scholar 

  • Cao J, Holden NM, Lu XT, et al. (2011) The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass and Forage. Science 66: 333–336. DOI: 10.1111/j.1365-2494.2011.00793.x

    Google Scholar 

  • Cao JJ, Yeh ET, Holden NM, et al. (2013) The effects of enclosures and land-use contracts on rangeland degradation on the Qinghai-Tibetan plateau. Journal of Arid. Environments 97: 3–8. DOI: 10.1016/j.jaridenv.2013.05.002

    Article  Google Scholar 

  • Carey S, Harte J, Moral R del (2006) Effect of community assembly and primary succession on the species-area relationship in disturbed ecosystems.. Ecography 29: 866–872. DOI: 10.1111/j.2006.0906-7590.04712.x

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B-Biological. Sciences 366: 2351–2363. DOI: 10.1098/rstb.2011.0063

    Google Scholar 

  • Chen J, Yamamura Y, Hori Y, et al. (2008) Small-scale species richness and its spatial variation in an alpine meadow on the Qinghai-Tibet Plateau. Ecological. Research 23: 657–663. DOI: 10.1007/s11284-007-0423-7

    Google Scholar 

  • Chiarucci A, Viciani D, Winter C, et al. (2006) Effects of productivity on species-area curves in herbaceous vegetation: evidence from experimental and observational data.. Oikos 115: 475–483. DOI: 10.1111/j.2006.0030-1299.15116.x

    Article  Google Scholar 

  • de Bello F, Lepš J, Sebastià MT (2007) Grazing effects on the species-area relationship: Variation along a climatic gradient in NE Spain. Journal of Vegetation. Science 18: 25–34. DOI: 10.1111/j.1654-1103.2007.tb02512.x

    Google Scholar 

  • Dengler J, Oldeland J (2010) Effects of sampling protocol on the shapes of species richness curves. Journal of. Biogeography 37: 1698–1705. DOI: 10.1111/j.1365-2699.2010.02322.x

    Article  Google Scholar 

  • Desilets P, Houle G (2005) Effects of resource availability and heterogeneity on the slope of the species-area curve along a floodplain-upland gradient. Journal of Vegetation. Science 16: 487–496. DOI: 10.1111/j.1654-1103.2005.tb02389.x

    Google Scholar 

  • Gerstner K, Dormann CF, Vaclavik T, et al. (2014) Accounting for geographical variation in species-area relationships improves the prediction of plant species richness at the global scale. Journal of. Biogeography 41: 261–273. DOI: 10.1111/ Jbi.12213

    Article  Google Scholar 

  • Gleason HA (1922) On the relation between species and area.. Ecology 3: 158–162. DOI: 10.2307/1929150

    Article  Google Scholar 

  • Gleason HA (1925) Species and area.. Ecology 6: 66–74. DOI: 10.2307/1929241

    Article  Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004) On species accumulation and species–area curves. Global Ecology and. Biogeography 13: 567–568. DOI: 10.1111/j.1466-822X.2004. 00138.x

    Article  Google Scholar 

  • He FL, Hubbell SP (2011) Species-area relationships always overestimate extinction rates from habitat loss.. Nature 473: 368–371. DOI: 10.1038/Nature09985

    Article  Google Scholar 

  • Hedberg P, Kozub L, Kotowski W (2014) Functional diversity analysis helps to identify filters affecting community assembly after fen restoration by top-soil removal and hay transfer. Journal for Nature. Conservation 22: 50–58. DOI: 10.1016/ j.jnc.2013.08.004

    Google Scholar 

  • Hiernaux P (1998) Effects of grazing on plant species composition and spatial distribution in rangelands of the Sahel. Plant. Ecology 138: 191–202. DOI: 10.1023/ A:1009752606688

    Google Scholar 

  • Houle G (1990) Species-area relationship during primary succession in granite outcrop plant-communities. American Journal of. Botany 77: 1433–1439. DOI: 10.2307/2444753

    Article  Google Scholar 

  • Hu ZM, Yu GR, Fan JW, et al. (2010) Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and. Biogeography 19: 842–851. DOI: 10.1111/j.1466-8238. 2010.00564.x

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecological. Monographs 54: 187–211. DOI: 10.2307/1942661

    Article  Google Scholar 

  • Keeley JE, Fotheringham C (2009) Plot shape effects on plant species diversity measurements. Journal of Vegetation. Science 16: 249–256. DOI: 10.1111/j.1654-1103.2005. tb02362.x

    Google Scholar 

  • Klimeš L (1999) Small-scale plant mobility in a species-rich grassland. Journal of Vegetation. Science 10: 209–218. DOI: 10.2307/3237142

    Google Scholar 

  • Lawton JH (1999) Are there general laws in ecology?. Oikos 84: 177–192.

    Article  Google Scholar 

  • Lazarina M, Kallimanis AS, Sgardelis SP (2013) Does the universality of the species–area relationship apply to smaller scales and across taxonomic groups?. Ecography 36: 965–970. DOI: 10.1111/j.1600-0587.2013.00149.x

    Article  Google Scholar 

  • Leps J, Stursa J (1989) Species-area curve, life-history strategies, and succession -a field-test of relationships.. Vegetatio 83: 249–257. DOI: 10.1007/Bf00031697

    Article  Google Scholar 

  • Li XJ, Zhang XZ, Wu JS, et al. (2011) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth. Sciences 64: 1911–1919. DOI: 10.1007/s12665-011-1004-1

    Google Scholar 

  • Lomolino MV (2000) Ecology's most general, yet protean pattern: the species-area relationship. Journal of. Biogeography 27: 17–26. DOI: 10.1046/j.1365-2699.2000. 00377.x

    Article  Google Scholar 

  • Lortie CJ, Brooker RW, Choler P, et al. (2004) Rethinking plant community theory.. Oikos 107: 433–438. DOI: 10.1111/j.0030-1299.2004.13250.x

    Article  Google Scholar 

  • Ma WL, Shi PL, Li WH, et al. (2010a) Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life. Sciences 53: 1142–1151. DOI: 10.1007/s11427-010-4054-9

    Google Scholar 

  • Ma WH, He JS, Yang YH, et al. (2010b) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and. Biogeography 19: 233–243. DOI: 10.1111/j.1466-8238.2009.00508.x

    Article  Google Scholar 

  • Morgan JW, Wong NK, Cutler SC (2011) Life-form species-area relationships in a temperate eucalypt woodland community. Plant. Ecology 212: 1047–1055. DOI: 10.1007/s11258-010-9885-8

    Google Scholar 

  • Olsen SL, Klanderud K. (2014) Biotic interactions limit species richness in an alpine plant community, especially under experimental warming.. Oikos 123: 71–78. DOI: 10.1111/j.1600-0706.2013.00336.x

    Article  Google Scholar 

  • Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the ecuadorian páramos. Plant. Ecology 131: 173–192. DOI: 10.1023/a:1009796224479

    Google Scholar 

  • Rejmének M, Rosén E. (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. Journal of Vegetation. Science 3: 625–630. DOI: 10.2307/ 3235829

    Google Scholar 

  • Schöb C, Michalet R, Cavieres LA, et al. (2014) A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs. New Phytologist 202: 95–105. DOI: 10.1111/nph.12641

    Article  Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Global Ecology and. Biogeography 12: 441–447. DOI: 10.1046/j.1466-822X.2003.00061.x

    Article  Google Scholar 

  • Scheiner SM (2004) A melange of curves -further dialogue about species-area relationships. Global Ecology and Biogeography 13: 479–484. DOI: 10.1111/j.1466-822X.2004. 00127.x

    Article  Google Scholar 

  • Scheiner SM (2009) The terminology and use of species-area relationships: a response to Dengler (2009). Journal of. Biogeography 36: 2005–2008. DOI: 10.1111/j.1365-2699.2009. 02164.x

    Article  Google Scholar 

  • Shen GC, Yu MJ, Hu XS, et al. (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity.. Ecology 90: 3033–3041. DOI: 10.1890/ 08-1646.1

    Article  Google Scholar 

  • Shi Y, Wang Y, Ma Y, et al. (2014) Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands.. Biogeosciences 11: 2003–2016. DOI: 10.5194/bg-11-2003-2014

    Article  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species-diversity. Journal of. Biogeography 12: 1–20. DOI: 10. 2307/2845026

    Article  Google Scholar 

  • Singh JS, Bourgeron P, Lauenroth WK (1996) Plant species richness and species-area relations in a shortgrass steppe in Colorado. Journal of Vegetation. Science 7: 645–650. DOI: 10.2307/3236376

    Google Scholar 

  • Stegen JC, Swenson NG (2009) Functional trait assembly through ecological and evolutionary time. Theoretical. Ecology 2: 239–250. DOI: 10.1007/s12080-009-0047-3

    Google Scholar 

  • Stohlgren TJ, Falkner MB, Schell LD (1995) A Modified-Whittaker Nested Vegetation Sampling Method. Vegetatio 117: 113–121. DOI: 10.1007/Bf00045503

    Article  Google Scholar 

  • Texeira M, Altesor A (2009) Small-scale spatial dynamics of vegetation in a grazed Uruguayan grassland. Austral. Ecology 34: 386–394. DOI: 10.1111/j.1442-9993.2009.01940.x

    Google Scholar 

  • Tjorve E (2003) Shapes and functions of species-area curves: a review of possible models. Journal of. Biogeography 30: 827–835. DOI: 10.1046/j.1365-2699.2003.00877.x

    Article  Google Scholar 

  • Tjorve E (2009) Shapes and functions of species-area curves (II): a review of new models and parameterizations. Journal of. Biogeography 36: 1435–1445. DOI: 10.1111/j.1365-2699.2009. 02101.x

    Article  Google Scholar 

  • Tjorve E, Tjorve KM (2008) The species-area relationship, selfsimilarity, and the true meaning of the z-value.. Ecology 89: 3528–3533. DOI: 10.1890/07-1685.1

    Article  Google Scholar 

  • Turner WR, Tjorve E (2005) Scale-dependence in species-area relationships.. Ecography 28: 721–730. DOI: 10.1111/j.2005. 0906-7590.04273.x

    Article  Google Scholar 

  • Ulrich W, Buszko J (2007) Sampling design and the shape of species-area curves on the regional scale. Acta Oecologica-International Journal of. Ecology 31: 54–59. DOI: 10.1016/ j.actao.2006.03.005

    Google Scholar 

  • Wang Z, Luo TX, Li RC, et al. (2013) Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. Journal of Vegetation. Science 24: 189–201. DOI: 10.1111/ j.1654-1103.2012.01442.x

    Google Scholar 

  • Whittaker RJ, Matthews TJ, Fernández-Palacios JM (2014) The varied form of species-area relationships. Journal of. Biogeography 41: 209–210. DOI: 10.1111/jbi.12256

    Article  Google Scholar 

  • Whittaker RJ, Triantis KA (2012) The species-area relationship: an exploration of that 'most general, yet protean pattern'. Journal of. Biogeography 39: 623–626. DOI: 10.1111/j.1365-2699.2012.02692.x

    Article  Google Scholar 

  • Wu GL, Shang ZH, Zhu YJ, et al. (2014a) Species abundanceseed size patterns within a plant community affected by grazing disturbance. Ecological Applications. DOI: 10.1890/14-0135.1

    Google Scholar 

  • Wu JS, Shen ZX, Zhang XZ (2014b) Precipitation and species composition primarily determine the diversity–productivity relationship of alpine grasslands on the Northern Tibetan Plateau. Alpine. Botany 124: 13–25. DOI: 10.1007/s00035-014-0125-z

    Google Scholar 

  • Wu JS, Shen ZX, Shi PL, et al. (2014c) Effects of grazing exclusion on plant functional group diversity alpine grasslands along a precipitation gradient on the Northern Tibetan Plateau. Arctic Antarctic and Alpine. Research 46: 419–429. DOI: 10.1657/1938-4246-46.2.419

    Google Scholar 

  • Wu JS, Shen ZX, Zhang XZ, et al. (2013a) Biomass allocation patterns of alpine grassland species and functional groups along a precipitation gradient on the Northern Tibetan Plateau. Journal of Mountain. Science 10: 1097–1108. DOI 10.1007/s11629-013-2435-9

    Google Scholar 

  • Wu JS, Zhang XZ, Shen ZX, et al. (2013b) Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau. Rangeland Ecology & Management 66: DOI: 454–461. Doi 10.2111/Rem-D-12-00051.1

    Article  Google Scholar 

  • Wu JS, Zhang XZ, Shen ZX, et al. (2014d) Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Chinese Science. Bulletin 59: 4332–4340. DOI: 10.1007/s11434-014-0362-y

    Google Scholar 

  • Wu JS, Zhang XZ, Shen ZX, et al. (2012) Species richness and diversity of alpine grasslands on the Northern Tibetan Plateau: effects of grazing exclusion and growing season precipitation. Journal of Resources and. Ecology 3: 236–242. DOI: 10.5814/ j.issn.1674-764x.2012.03.006

    Google Scholar 

  • Yan YJ, Yang X, Tang Z (2013) Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecology and. Evolution 3: 4584–4595. DOI: 10.1002/ece3.847

    Google Scholar 

  • Yang YH, Fang JY, Fay PA, et al. (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters 37: L15702. DOI: 10.1029/2010gl043920

    Google Scholar 

  • Yang YH, Fang JY, Pan YD, et al. (2009) Aboveground biomass in Tibetan grasslands. Journal of Arid. Environments 73: 91–95. DOI: 10.1016/j.jaridenv.2008.09.027

    Article  Google Scholar 

  • Yu FH, Krusi B, Schutz M, et al. (2008) Plant communities affect the species-area relationship on Carex sempervirens tussocks.. Flora 203: 197–203. DOI: 10.1016/j.flora.2007. 03.002

    Article  Google Scholar 

  • Zhou XM (2001) Chinese Kobresia Meadow. Science Press, Beijing, China. pp 155–160. (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-shuang Wu.

Additional information

http://orcid.org/0000-0002-9816-2678

http://orcid.org/0000-0002-6768-8255

http://orcid.org/0000-0002-3485-5459

http://orcid.org/0000-0003-2643-7430

http://orcid.org/0000-0003-1045-5714

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Wu, Js., Shen, Zx. et al. Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau, China. J. Mt. Sci. 13, 265–275 (2016). https://doi.org/10.1007/s11629-014-3166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3166-2

Keywords

Navigation