Skip to main content
Log in

Dam-break modeling in alpine valleys

  • Special topics from the 35th IAHR World Congress
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Dam-break analysis is of great importance in mountain environment, especially where reservoirs are located upstream of densely populated areas and hydraulic hazard should be assessed for land planning purposes. Accordingly, there is a need to identify suitable operative tools which may differ from the ones used in flat flood-prone areas. This paper shows the results provided by a 1D and a 2D model based on the Shallow Water Equations (SWE) for dam-break wave propagation in alpine regions. The 1D model takes advantage of a topographic toolkit that includes an algorithm for pre-processing the Digital Elevation Model (DEM) and of a novel criterion for the automatic cross-section space refinement. The 2D model is FLO-2D, a commercial software widely used for flood routing in mountain areas. In order to verify the predictive effectiveness of these numerical models, the test case of the Cancano dam-break has been recovered from the historical study of De Marchi (1945), which provides a unique laboratory data set concerning the consequences of the potential collapse of the former Cancano dam (Northern Italy). The measured discharge hydrograph at the dam also provides the data to test a simplified method recently proposed for the characterization of the hydrograph following a sudden dam-break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alcrudo F, Mulet J (2007) Description of the Tous dam break case study (Spain). Journal of Hydraulic Research 45(Extra Issue): 45–57. DOI: 10.1080/00221686.2007.9521832

    Article  Google Scholar 

  • ANIDEL, The Federation of the Italian Electric Power Companies [Associazione Nazionale Imprese Produttrici e Distributrici di Energia Elettrica] (1953) The dams of the Italian hydroelectric plants [Le dighe di ritenuta degli impianti idroelettrici italiani]. Vol. 7, ANIDEL, Rome, Italy (In Italian).

    Google Scholar 

  • Aureli F, Maranzoni A, Mignosa P, et al. (2008a). 2D numerical modeling for hydraulic hazard assessment: a dam-break case study. Proceedings of River Flow 2008. Çeşme, Turkey. pp 729–736.

    Google Scholar 

  • Aureli F, Maranzoni A, Mignosa P, et al. (2008b) Dam-break flows: acquisition of experimental data through an imaging technique and 2D numerical modeling. Journal of Hydraulic Engineering 134(8): 1089–1101. DOI: 10.1061/(ASCE)0733-9429(2008)134:8(1089)

    Article  Google Scholar 

  • Begnudelli L, Sanders BF (2007) Simulation of the St. Francis dam-break flood. Journal of Engineering Mechanics, 133(11): 1200–1212. DOI: 10.1061/(ASCE)0733-9399(2007)133:11(1200)

    Google Scholar 

  • Braschi G, Gallati M (1992) Conservative flux prediction algorithm for the explicit computation of transcritical flow in natural streams. Proceedings of Hydrosoft ′92. Southampton, England. pp 381–395.

    Google Scholar 

  • Brufau P, Vázquez-Cendón ME, García-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. International Journal for Numerical Methods in Fluids 39(3): 247–275. DOI: 10.1002/fld.285

    Article  Google Scholar 

  • Caleffi V, Valiani A, Zanni A (2003) Finite volume method for simulating extreme flood events in natural channels. Journal of Hydraulic Research 41(2): 167–177. DOI: 10.1080/0022168 0309499959

    Article  Google Scholar 

  • Capart H, Eldho TI, Huang SY, et al. (2003) Treatment of natural geometry in finite volume river flow computations. Journal of Hydraulic Engineering 129(5): 385–393. DOI: 10.1061/(ASCE)0733-9429(2003)129:5(385)

    Article  Google Scholar 

  • Capart H, Eldho TI, Huang SY, et al. (2004) Closure to “Treatment of natural geometry in finite volume river flow computations”. Journal of Hydraulic Engineering 130(10): 1048–1049. DOI: 10.1061/(ASCE)0733-9429(2004)130:10 (1048.2)

    Article  Google Scholar 

  • Castellarin A, Di Baldassarre G, Bates PD, et al. (2009) Optimal cross-sectional spacing in Preissmann scheme 1D hydrodynamic models. Journal of Hydraulic Engineering 135(2): 96–105. DOI: 10.1061/(ASCE)0733-9429(2009)135: 2(96)

    Article  Google Scholar 

  • Chen J, Steffler PM, Hicks FE (2007) Conservative formulation for natural open channels and finite-element implementation. Journal of Hydraulic Engineering 133(9): 1064–1073. DOI: 10.1061/(ASCE)0733-9429(2007)133:9(1064)

    Article  Google Scholar 

  • De Marchi G (1945) On the dam-break wave following the collapse of the Cancano dam [Sull’onda di piena che seguirebbe al crollo della diga di Cancano]. L’Energia Elettrica 22: 319–340. (In Italian)

    Google Scholar 

  • Fernández-Nieto ED, Marin J, Monnier J (2010) Coupling superposed 1D and 2D shallow-water models: source terms in finite volume schemes. Computers & Fluids 39(6): 1070–1082. DOI: 10.1016/j.compfluid.2010.01.016

    Article  Google Scholar 

  • FLO-2D Software, Inc. (2009) FLO-2D Reference manual (Version 2009), Arizona, USA.

    Google Scholar 

  • Goutal N (1999) The Malpasset dam failure. An overview and test case definition. Proceedings of 4th CADAM meeting. Zaragoza, Spain.

    Google Scholar 

  • Hervouet JM, Petitjean A (1999) Malpasset dam-break revisited with two-dimensional computations. Journal of Hydraulic Research 37(6): 777–788. DOI: 10.1080/00221689909498511

    Article  Google Scholar 

  • Horritt MS, Bates PD (2002) Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268(1–4): 87–99. DOI: 10.1016/S0022-1694(02)00121-X

    Article  Google Scholar 

  • Jarrett RD (1984) Hydraulics of high gradient streams. Journal of Hydraulic Engineering 110(11): 1519–1539. DOI: 10.1080/00221689909498511

    Article  Google Scholar 

  • Jarrett RD, Costa JE (1986) Hydrology, geomorphology, and dam-break modeling of the July 15, 1982, Lawn Lake Dam and Cascade Lake Dam failures, Larimer County, Colorado. US Government Printing Office, Washington, USA.

    Google Scholar 

  • Liska R, Wendroff B (1998) Composite schemes for conservation laws. SIAM Journal on Numerical Analysis 35(6): 2250–2271. DOI: 10.1137/S0036142996310976

    Article  Google Scholar 

  • Liska R, Wendroff B (1999) Two-dimensional shallow water equations by composite schemes. International Journal for Numerical Methods in Fluids 30(4): 461–479. DOI: 10.1002/(SICI)1097-0363(19990630)30:4〈461::AID-FLD850〉3.0.CO;2-4

    Article  Google Scholar 

  • MacDonald I, Baines M, Nichols N, et al. (1997) Analytic benchmark solutions for open-channel flows. Journal of Hydraulic Engineering 123(11): 1041–1045. DOI: 10.1061/(ASCE)0733-9429(1997)123:11(1041)

    Article  Google Scholar 

  • Milanesi L, Pilotti M, Ranzi R, et al. (2014) Methodologies for hydraulic hazard mapping in alluvial fan areas. In: Evolving Water Resources Systems: Understanding, Predicting and Managing Water-Society Interactions, Proceedings of ICWRS2014, Bologna, Italy, 4–6 June 2014, IAHS Publication n.364, Wallingford (UK), ISBN: 978-1-907161-42-1, 267-272.

    Google Scholar 

  • O’Brien J, Julien P, Fullerton W (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Petaccia G, Natale L, Savi F (2008) Simulation of Sella Zerbino catastrophic dam-break. Proceedings of River Flow 2008. Çeşme, Turkey. pp 601–607.

    Google Scholar 

  • Pilotti M, Gandolfi C, Bischetti GB (1996) Identification and analysis of natural channel networks from digital elevation models. Earth Surface Processes and Landforms 21(11): 1007–1020. DOI: 10.1002/(SICI)1096-9837(199611)21:11〈1007::AID-ESP704〉3.0.CO;2-V

    Article  Google Scholar 

  • Pilotti M, Bacchi B (1997) Distributed evaluation of the contribution of soil erosion to the sediment yield from a watershed. Earth Surface Processes and Landforms 22(13): 1239–1251. DOI: 10.1002/(SICI)1096-9837(199724)22:13〈1239::AID-ESP839〉3.0.CO;2-K

    Article  Google Scholar 

  • Pilotti M, Tomirotti M, Valerio G, Bacchi B (2010) Simplified method for the characterization of the hydrograph following a sudden partial dam break. Journal of Hydraulic Engineering 136(10): 693–704. DOI: 10.1061/(ASCE)HY.1943-7900.000 0231

    Article  Google Scholar 

  • Pilotti M, Maranzoni A, Tomirotti M, Valerio G (2011) 1923 Gleno dam-break: case study and numerical modeling. Journal of Hydraulic Engineering 137(4): 480–492. DOI: 10.1061/(ASCE)HY.1943-7900.0000327

    Article  Google Scholar 

  • Pilotti M, Tomirotti M, Valerio G, et al. (2013) Discussion of “Experimental investigation of reservoir geometry effect on dam-break flow, by A. Feizi Khankandi, A. Tahershamsi and S. Soares-Frazão. Journal of Hydraulic Research 51(2): 220–222. DOI: 10.1080/00221686.2013.765165

    Article  Google Scholar 

  • Ponce VM, Theurer FD (1982) Accuracy criteria in diffusion routing. Journal of the Hydraulics Division 108(6): 747–757.

    Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, et al. (2006) Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10(2): 241–264. DOI: 10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Ritter A (1892) The propagation of water waves [Die Fortpflanzung der Wasserwellen]. Zeitschrift des Vereines Deutscher Ingenieure 36(3): 947–954 (In German).

    Google Scholar 

  • Samuels PG (1990) Cross section location in one-dimensional models. In: White WR (Ed.), International Conference on River Flood Hydraulics. Wiley, Chichester, England. pp 339–350.

    Google Scholar 

  • Soares Frazão S, Testa G (1999) The Toce River test case: numerical results analysis. Proceedings of the 3rd CADAM workshop. Milan, Italy.

    Google Scholar 

  • Soares Frazão S, Zech Y, et al. (2003) IMPACT, Investigation of extreme flood processes and uncertainty. 3rd Project Workshop Proceedings. Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Soares Frazão S (2007). Experiments of dam-break wave over a triangular bottom sill. Journal of Hydraulic Research 45(Special Issue): 19–26. DOI: 10.1080/00221686.2007.9521829

    Article  Google Scholar 

  • Soares Frazão S, Zech Y (2007). Experimental study of dambreak flow against an isolated obstacle. Journal of Hydraulic Research 45(Special Issue): 27–36. DOI: 10.1080/00221686.2007.9521830

    Article  Google Scholar 

  • Stoker JJ (1948) The formation of breakers and bores. Communications on Pure and Applied Mathematics 1:1–87.

    Article  Google Scholar 

  • Tayefi V, Lane SN, Hardy RJ, et al. (2007) A comparison of one- and two-dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes 21(23): 3190–3202. DOI: 10.1002/hyp.6523

    Article  Google Scholar 

  • Thacker WC (1981) Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics 107: 499–508. DOI: 10.1017/S0022112081001882

    Article  Google Scholar 

  • Toro EF (2001) Shock-capturing Methods for Free-Surface Shallow Flows. John Wiley & Sons Ltd., Chichester, England.

    Google Scholar 

  • Valiani A, Caleffi V, Zanni A (2002) Case study: Malpasset dambreak simulation using a two-dimensional finite volume method. Journal of Hydraulic Engineering 128(5): 385–393. DOI: 10.1061/(ASCE)0733-9429(2002)128:5(460)

    Article  Google Scholar 

  • Wu YH, Liu KF, Chen YC (2013) Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science 10(2): 293–304. DOI:10.1007/s11629-013-2511-1

    Article  Google Scholar 

  • Xia J, Falconer RA, Wang Y, et al. (2014). New criterion for the stability of a human body in floodwaters. Journal of Hydraulic Research 52(1): 93–104. DOI: 10.1080/00221686.2013.875 073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pilotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilotti, M., Maranzoni, A., Milanesi, L. et al. Dam-break modeling in alpine valleys. J. Mt. Sci. 11, 1429–1441 (2014). https://doi.org/10.1007/s11629-014-3042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3042-0

Keywords

Navigation