Skip to main content
Log in

Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.)

  • Embryo Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration using mature seeds in four genotypes (‘CO5’, ‘CO7’, ‘TNAU43’ and ‘RS118’) of foxtail millet have been studied. The ‘CO5’ gave a superior response in callus induction, somatic embryogenesis and regeneration. The highest percentage (69.3%) of embryogenic callus induction was obtained in ‘CO5’ on Murashige and Skoog (MS) medium supplemented with 3.5 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D), 1 mg L−1 kinetin and 1 mg L−1 1-naphthaleneacetic acid (NAA). Somatic embryogenesis and shoot regeneration were influenced by amino acids, carbohydrates and cefotaxime in culture medium. Maximum response of somatic embryo induction and maturation was seen on MS medium containing 3.5 mg L−1 2,4-D, 1 mg L−1 kinetin and 1 mg L−1 NAA, 750 mg L−1 proline, 2.0 mg L−1 glycine, 150 mg L−1 arginine, 800 mg L−1 casein enzymatic hydrolyzate, 20 g L−1 each sucrose and maltose and 500 mg L−1 cefotaxime. The highest frequency of plant regeneration with 21.3 shoots was obtained in ‘CO5’ on MS medium containing 3 mg L−1 6-benzylaminopurine, 0.2 mg L−1 2,4-D, 750 mg L−1 proline, 2.0 mg L−1 glycine, 150 mg L−1 arginine and 800 mg L−1 casein enzymatic hydrolyzate. The highest response of root induction with more roots and longer roots was observed in ‘CO5’ when cultured on half-strength MS medium. The in vitro-regenerated plantlets were carefully transferred to soil cups, maintained in growth chamber for a week, hardened and grown to maturity in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagi maurorum using SCoT, ISSR and RAPD markers. Plant Cell Tissue Organ Cult 120:313–323

    Article  CAS  Google Scholar 

  • Austin DF (2006) Fox-tail millets (Setaria: Poaceae) abandoned food in two hemispheres. Econ Bot 60:143–158

    Article  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Borrelli GM, Fonzi ND, Luptto E (1992) Effect of cefotaxime on callus culture and plant regeneration in durum wheat. J Plant Physiol 104:372–374

    Article  Google Scholar 

  • Burris JN, Mann DGJ, Joyce BL, Stewart CN Jr (2009) An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). Bioenerg Res 2:267–274

    Article  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and Arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve pht1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE 9:e108459. doi:10.1371/journal.pone.0108459

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788

    Article  CAS  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tissue Organ Cult 102:153–162

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770

    Article  PubMed  Google Scholar 

  • Choi HW, Lemaux PG, Cho M (2000) High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants. Plant Sci 156:85–94

    Article  CAS  PubMed  Google Scholar 

  • Danilova SA, Dolgikh YI (2004) The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russ J Plant Physiol 51:559–562

    Article  CAS  Google Scholar 

  • Dawns CJ (1971) Biological techniques in electron microscopy. Barnes and Noble, New York

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Eapen S, George L (1990) Influence of phytohormones, carbohydrates, amino-acids, growth supplements and antibiotics on somatic embryogenesis and plant differentiation in finger millet. Plant Cell Tissue Organ Cult 22:87–93

    Article  CAS  Google Scholar 

  • Grewal D, Gill R, Gosal SS (2006) Influence of antibiotic cefotaxime on somatic embryogenesis and plant regeneration in Indica rice. Biotechnol J 1:1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Rahhuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgall. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800

    Article  CAS  PubMed  Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol Plant 25:1163–1166

    Article  Google Scholar 

  • Karthikeyan A, Pandian STK, Ramesh M (2009) High frequency plant regeneration from embryogenic callus of a popular Indica rice (Oryza sativa L.). Physiol Mol Biol Plants 15:371–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Gill MS, Ruma D, Gosal SS (2008) Enhanced in vitro shoot multiplication and elongation in sugarcane using cefotaxime. Sugar Tech 10:60–64

    Article  CAS  Google Scholar 

  • Kaur P, Kothari SL (2004) In vitro culture of kodo millet: influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell Tissue Organ Cult 77:73–79

    Article  CAS  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Manoharan M, Dahleen L (2002) Genetic transformation of the commercial barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus. Plant Cell Rep 21:76–80

    Article  CAS  Google Scholar 

  • Mathias RJ, Boyd LA (1986) Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L.). Plant Sci 46:217–223

    Article  CAS  Google Scholar 

  • Mathias RJ, Mukasa C (1987) The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.). Plant Cell Rep 6:454–457

    CAS  PubMed  Google Scholar 

  • Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol Plant 38:39–45

    Article  CAS  Google Scholar 

  • Mittal P, Gosal SS, Senger A, Kumar P (2009) Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiol Mol Biol Plants 15:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaieb REA, El-Arabi NI, Momtaz OA, Youssef SS, Soliman MH (2010) Genetic transformation of mature embryos of bread (T. aestivum) and pasta (T. durum) wheat genotypes. GM Crops 1:87–93

    PubMed  Google Scholar 

  • Mohamed SV, Wang CS, Thiruvengadam M, Jayabalan N (2004) In vitro plant regeneration via somatic embryogenesis through cell suspension cultures of horsegram [Macrotyloma uniflorum (Lam.) Verdc.]. In Vitro Cell Dev Biol Plant 40:284–289

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura T, Maeda E (1989) A scanning electron microscope study on Japonica type rice callus cultures, with emphasis on plantlet initiation. Jpn J Crop Sci 58:395–403

    Article  Google Scholar 

  • Osuna-Avila P, Nava-Cedillo A, Jofre-Garfias AE (1995) Plant regeneration from shoot apex explants of foxtail millet. Plant Cell Tissue Organ Cult 40:33–35

    Article  Google Scholar 

  • Ozawa K, Komamine A (1989) Establishment of a system of high-frequency embryogenesis from long-term cell suspension cultures of rice (Oryza sativa L.). Theor Appl Genet 77:205–211

    Article  CAS  PubMed  Google Scholar 

  • Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Pescador R, Kerbauy GB, Ferreira DM, Purgatto E, Suzuki RM, Guerra MP (2012) A hormonal misunderstanding in Acca sellowiana embryogenesis: levels of zygotic embryogenesis do not match those of somatic embryogenesis. Plant Growth Regul 68:67–76

    Article  CAS  Google Scholar 

  • Pius J, George L, Eapen S, Rao PS (1993) Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tissue Organ Cult 32:91–96

    Article  CAS  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Daniel MA, Ignacimuthu S (2013) Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.). In Vitro Cell Dev Biol Plant 49:285–293

    Article  Google Scholar 

  • Rao AM, Kishor PB, Reddy LA, Vaidyanath K (1988) Callus induction and high frequency plant regeneration in Italian millet (Setaria italica). Plant Cell Rep 7:557–559

    Article  CAS  PubMed  Google Scholar 

  • Rao AM, Sree KP, Kishor PBK (1995) Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Rep 15:72–75

    Article  CAS  PubMed  Google Scholar 

  • Reddy LA, Vaidyanath K (1990) Callus formation and regeneration in two induced mutants of foxtail millet (Setaria italica). J Genet Breed 44:133–138

    Google Scholar 

  • Rout GR, Samantaray S, Das P (1998) The role of nickel on somatic embryogenesis in Setaria italica L. in vitro. Euphytica 101:319–324

    Article  CAS  Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2006) Comparative efficacy of abscisic acid and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regul 48:1–11

    Article  CAS  Google Scholar 

  • Saika H, Toki S (2010) Mature seed-derived callus of the model Indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satish L, Ceasar SA, Shilpha J, Rency AS, Rathinapriya P, Ramesh M (2015) Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 51:192–200

    Article  Google Scholar 

  • Sato K, Mukainari Y, Naito K, Fukunaga K (2013) Construction of a foxtail millet linkage map and mapping of spikelet-tipped bristles 1(stb1) by using transposon display markers and simple sequence repeat markers with genome sequence information. Mol Breed 31:675–684

    Article  CAS  Google Scholar 

  • SPSS Inc (2003) SPSS base 12.0 user’s guide. SPSS Inc, Chicago

    Google Scholar 

  • Strickland SG, Nichol JW, McCall CM, Stuart DA (1987) Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci 48:113–121

    Article  CAS  Google Scholar 

  • Suma PF, Urooj A (2012) Antioxidant activity of extracts from foxtail millet (Setaria italica). J Food Sci Technol 49:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari JK, Chandel P, Gupta S, Gopal J, Singh BP, Bhardwaj V (2013) Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiol Mol Biol Plants 4:587–595

    Article  Google Scholar 

  • Vikrant, Rashid A (2001) Direct as well as indirect somatic embryogenesis from immature (unemerged) inflorescence of a minor millet Paspalum scrobiculatum L. Euphytica 120:167–172

    Article  CAS  Google Scholar 

  • Vikrant, Rashid A (2003) Somatic embryogenesis or shoot formation following high 2,4-D pulse-treatment of mature embryos of Paspalum scrobiculatum. Biol Plant 46:297–300

    Article  CAS  Google Scholar 

  • Vishnoi RK, Kothari SL (1996) Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L.) Beauv. Cereal Res Commun 24:291–297

    Google Scholar 

  • Wang MZ, Pan YL, Li C, Liu C, Zhao Q, Ao GM, Yu JJ (2011) Culturing of immature inflorescences and Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Afr J Biotechnol 10:16466–16479

    CAS  Google Scholar 

  • Xu Z, Wei Z, Yang L (1983) Tissue culture of Setaria italica and Setaria lutescens. Plant Physiol Commu 5:40

    Google Scholar 

  • Xu ZH, Wang DY, Yang LJ, Wei ZM (1984) Somatic embryogenesis and plant regeneration in callus cultured immature inflorescence of Setaria italica. Plant Cell Rep 3:149–150

    Article  CAS  PubMed  Google Scholar 

  • Yadav T, Kothari SL, Kachhwaha S (2011) Evaluation of regeneration potential of mature embryo derived callus in Indian cultivars of barley (Hordeum vulgare L.). J Plant Biochem Biotechnol 20:166–172

    Article  Google Scholar 

  • Yang L, Xu Z (1985) Somatic embryogenesis and plant regeneration from cell suspension culture of Stearia italica (L) Beauv. Acta Biologiae Experimentalis Sinica 18:493–498

    Google Scholar 

  • Zhang BH, Liu F, Liu ZH, Wang HM, Yao CB (2001) Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regul 33:137–149

    Article  Google Scholar 

  • Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959–966

    Article  CAS  Google Scholar 

  • Zhang GY, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–556

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M, Liu X, Chai Y, Zhang X, Wang H, Li Y, Li W, Zhi H, Jia G, Diao X (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics 15:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

L. Satish and P. Rathinapriya sincerely thank the University Grants Commission, Government of India, New Delhi, India, for financial support in the form of UGC-BSR fellowship. We thank Department of Small Millets, Millet Research Station, Tamil Nadu Agricultural University, for providing the seed material used in the present study. Also, the authors gratefully acknowledge the Bioinformatics Infrastructure Facility of Alagappa University (funded by Department of Biotechnology, Government of India: Grant No. BT/BI/25/001/2006) for providing the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lakkakula Satish or Manikandan Ramesh.

Additional information

Editor: Ewen Mullins

Lakkakula Satish and Periyasamy Rathinapriya contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

A typical RAPD banding pattern amplified by using primes OPD18, OPC19, OPC16, OPH02, and OPA02 were resolved in 6% polyacrylamide gel using TBE buffer, stained with ethidium bromide and visualized under UV light. M & m were 1kb and 100Bp standard markers respectively, from lanes 1-3 seed derived foxtail millet and lanes from 4-8 were loaded with in vitro raised plantlets. (DOCX 310 kb)

Supplementary Table 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satish, L., Rathinapriya, P., Ceasar, S.A. et al. Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cell.Dev.Biol.-Plant 52, 140–153 (2016). https://doi.org/10.1007/s11627-015-9724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9724-7

Keywords

Navigation