Skip to main content
Log in

Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Growth regulators and carbohydrates are key regulatory factors that affect somatic embryogenesis. Carbohydrates serve as energy and carbon sources, osmotica and osmoprotectants and are important signal molecules. Most information about the role of carbohydrates in somatic embryogenesis in Norway spruce has been obtained with embryos grown on semi-solid media. The aim of the present study was to gain a better understanding of the effects of exogenous carbohydrates through modification of medium components (sugars) and physical state (liquid and semi-solid media). Rafts, floating on liquid medium, were used to allow precise manipulation of carbohydrate availability, though it did not result in the highest embryo yields. Our results indicate the following for Norway spruce somatic embryo development: (1) overall carbohydrate dynamics in somatic embryos cultivated on liquid or semi-solid media were similar; (2) the total carbohydrate content, however, was higher in somatic embryos cultivated on liquid media; (3) sucrose was present in somatic embryos even when they matured on sucrose-free media; (4) sucrose content in liquid sucrose-supplemented maturation media decreased sharply during a 1-wk subculture interval; (5) the accumulation of the raffinose family oligosaccharides during desiccation was determined independently of previous sugar supply; and (6) a decrease of sucrose and an increase of hexoses contents accompanied somatic embryo germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Attree S. M.; Budimir S.; Fowke L. C. Somatic embryogenesis and plantlet regeneration from cultured shoots and cotyledons of seedlings germinated from stored seed of black and white spruce (Picea mariana and Picea glauca). Can J Bot 68: 30–34; 1990a.

    Article  CAS  Google Scholar 

  • Attree S. M.; Fowke L. C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Org Cult 35: 1–35; 1993.

    Article  CAS  Google Scholar 

  • Attree S. M.; Moore D.; Sawhney V. K.; Fowke L. C. Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench.) Voss.) somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann Bot 68: 519–525; 1991.

    Google Scholar 

  • Attree S. M.; Pomeroy M. K.; Fowke L. C. Development of white spruce (Picea glauca (Moench.) Voss.) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J Exp Bot 46: 433–439; 1995.

    Article  CAS  Google Scholar 

  • Attree S. M.; Tautorus T. E.; Dunstan D. I.; Fowke L. C. Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Can J Bot 68: 2583–2589; 1990b.

    Article  Google Scholar 

  • Belmonte M. E.; Macey J.; Yeung E. C.; Stasolla C. The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43: 337–346; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Blanc G.; Lardet L.; Martin A.; Jacob J. L.; Carron M. P. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). J Exp Bot 53: 1453–1462; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Bonga J. M.; von Aderkas P. In vitro culture of trees. Kluwer Academic Publishers, Dordrecht; 1992.

    Book  Google Scholar 

  • Bozhkov P. V.; von Arnold S. Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plantarum 104: 211–224; 1998.

    Article  CAS  Google Scholar 

  • Businge E.; Brackmann K.; Moritz T.; Egertsdotter U. Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32: 232–244; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Carman J. G.; Reese G.; Fuller R. J.; Ghermay T.; Timmis R. Nutrient and hormone levels in Douglas fir corrosion cavities, megagametophytes, and embryos during embryony. Can J Forest Res 35: 2447–2456; 2005.

    Article  CAS  Google Scholar 

  • Dyachok J. V.; Wiweger M.; Kenne L.; von Arnold S. Endogenous nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128: 523–533; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egertsdotter U.; von Arnold S. Importance of arabinogalactans proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plantarum 93: 334–345; 1995.

    Article  CAS  Google Scholar 

  • Find J. I. Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci 128: 75–83; 1997.

    Article  CAS  Google Scholar 

  • Finer J. J.; Kriebel H. B.; Becwar M. R. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep 8: 203–206; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Galerne M.; Bercetche J.; Dereuddre J. Cryoconservation of embryogenic callus of Norway spruce (Picea abies (L.) Karst.): influence of different factors on callus recovery and on embryo and plant production. B Soc Bot Fr–Lett 139: 331–344; 1992.

    Google Scholar 

  • Ganesan M.; Thiruppathi S.; Eswaran K.; Reddy C. R. K.; Jha B. Development of an improved method of cultivation to obtain high biomass of the red alga Gelidiella acerosa (Gelidiales, Rhodophyta) in the open sea. Biomass Bioenerg 35: 2729–2736; 2011.

    Article  Google Scholar 

  • George E. F. Plant Propagation by Tissue Culture: Part 1. The Technology. Exegetics Ltd., Edington, pp 322–326; 1993.

    Google Scholar 

  • Gibson S. I. Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55: 253–264; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Gorbatenko O.; Hakman I. Desiccation-tolerant somatic embryos of Norway spruce (Picea abies) can be produced in liquid cultures and regenerated into plantlets. Int J Plant Sci 162: 1211–1218; 2001.

    Article  Google Scholar 

  • Gösslová M.; Svobodová H.; Lipavská H.; Albrechtová J.; Vreugdenhil D. Comparing carbohydrate status during Norway spruce seed development and somatic embryo formation. In Vitro Cell Dev Biol - Plant 37: 24–28; 2001.

    Article  Google Scholar 

  • Gupta P. K.; Durzan D. J. Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio-Technol 4: 643–645; 1986.

    Article  Google Scholar 

  • Gupta P. K.; Grob J. A. Somatic embryogenesis in conifers. In: Jain S.; Gupta P. K.; Newton R. (eds) Somatic Embryogenesis in Woody Plants 1. Kluwer Academic Publishers, Dordrecht, pp 81–98; 1995.

    Google Scholar 

  • Gupta P. K.; Pullman G.; Timmis R. Forestry in the 21st century. Bio-Technol 11: 454–459; 1993.

    Article  Google Scholar 

  • Hakman I.; von Arnold S. Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (White Spruce). Physiol Plantarum 72: 579–587; 1988.

    Article  CAS  Google Scholar 

  • Hvoslef-Eide A. K.; Munster C.; Heyerdahl P. H.; Lyngved R.; Olsen O. A. S. Liquid culture systems for plant propagation. Acta Hortic 625: 173–185; 2003.

    Google Scholar 

  • Hvoslef-Eide A. K.; Olsen O. A. S.; Lyngved R.; Munster C. Bioreactor design for propagation of somatic embryos. Plant Cell Tiss Org Cult 81: 265–276; 2005.

    Article  Google Scholar 

  • Iraqi D.; Le V. Q.; Lamhamedi M. S.; Tremblay F. M. Sucrose utilization during somatic embryo development in black spruce: involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. J Plant Physiol 162: 115–124; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Iraqi D.; Tremblay F. M. Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52: 2301–2311; 2001a.

    Article  CAS  PubMed  Google Scholar 

  • Iraqi D.; Tremblay F. M. The role of sucrose during maturation of black spruce (Picea mariana) and white spruce (Picea glauca). Physiol Plantarum 111: 381–388; 2001b.

    Article  CAS  Google Scholar 

  • Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7: 235–246; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kong L. S.; Yeung E. C. Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plantarum 93: 298–304; 1995.

    Article  CAS  Google Scholar 

  • Konrádová H.; Lipavská H.; Albrechtová J.; Vreugdenhil D. Sucrose metabolism during somatic and zygotic embryogenesis in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J Plant Physiol 159: 387–396; 2002.

    Article  Google Scholar 

  • Lipavská H.; Konrádová H. Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol - Plant 40: 23–30; 2004.

    Article  Google Scholar 

  • Lipavská H.; Svobodová H.; Albrechtová J.; Kumstýřová L.; Vágner M.; Vondráková Z. Carbohydrate status during static embryo maturation in Norway spruce. In Vitro Cell Dev Biol - Plant 36: 260–267; 2000.

    Article  Google Scholar 

  • Nørgaard J. V. Somatic embryo maturation and plant regeneration in Abies nordmandiana Lk. Plant Sci 124: 211–221; 1997.

    Article  Google Scholar 

  • Pâques M.; Berceteche J.; Dumas E. Liquid media to improve and reduce the cost of in vitro conifer propagation. Acta Hortic 319: 95–100; 1992.

    Google Scholar 

  • Pâques M.; Berceteche J.; Palada M. Prospects and limits of somatic embryogenesis of Picea abies. In: Jain S.; Gupta P. K.; Newton R. (eds) Somatic Embryogenesis in Woody Plants 1. Kluwer Academic Publishers, Dordrecht, pp 399–414; 1995.

    Google Scholar 

  • Pelacho A. M.; Martin-Closas L.; Sanfeliu J. L. I. In vitro induction of potato tuberization by organic acids. Potato Res 42: 585–591; 1999.

    Article  CAS  Google Scholar 

  • Pullman G. S.; Buchanan M. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28: 985–996; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Pullman G. S.; Johnson S. Loblolly pine (Pinus taeda) female gametophyte and embryo pH changes during seed development. Tree Physiol 29: 829–836; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ratnaparkhe S. M.; Egertsdotter E. M. U.; Flinn B. S. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. Planta 230: 339–354; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Rolland F.; Baena-Gonzalez E.; Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: 675–709; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Rook F.; Bevan M. W. Genetic approaches to understanding sugar-response pathways. J Exp Bot 54: 495–501; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ruaud J. N.; Bercetche J.; Paques M. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Rep 11: 563–566; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Salajová T.; Salaj J. Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158: 747–755; 2001.

    Article  Google Scholar 

  • Schuller A.; Reuther G. Response of Abies alba embryonal-suspensor mass to various carbohydrate treatments. Plant Cell Rep 12: 199–202; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Phys 51: 19–81; 2000.

    Google Scholar 

  • Smeekens S.; Ma J. K.; Hanson J.; Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13: 274–279; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C.; van Zyl L.; Egertsdotter U.; Craig D.; Liu W. B.; Sederoff R. R. Transcript profiles of stress-related genes in developing white spruce (Picea glauca) somatic embryos cultured with polyethylene glycol. Plant Sci 165: 719–729; 2003.

    Article  CAS  Google Scholar 

  • Stasolla C.; Yeung E. C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74: 15–35; 2003.

    Article  CAS  Google Scholar 

  • Taber R. P.; Zhang C. H.; Hu W. S. Kinetics of Douglas fir (Pseudotsuga menziesii) somatic embryo development. Can J Bot 76: 863–871; 1998.

    CAS  Google Scholar 

  • Tang W.; Newton R. J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22: 1–15; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Tautorus T. E.; Attree S. M.; Fowke L. C.; Dunstan D. I. Somatic embryogenesis from immature and mature zygotic embryos, and embryo regeneration from protoplasts in black spruce (Picea mariana Mill.). Plant Sci 67: 115–124; 1990.

    Article  Google Scholar 

  • Tautorus T. E.; Fowke L. C.; Dunstan D. I. Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899; 1991.

    Article  Google Scholar 

  • Timmis R. Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Progr 14: 156–166; 1998.

    Article  CAS  Google Scholar 

  • Tremblay L.; Tremblay F. M. Carbohydrate requirements for the development of black spruce (Picea mariana (Mill.) B.S.P.) and red spruce (Picea rubens Sarg.) somatic embryos. Plant Cell Tiss Org Cult 27: 95–103; 1991.

    Article  CAS  Google Scholar 

  • Tremblay L.; Tremblay F. M. Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss Org Cult 42: 39–46; 1995.

    Article  CAS  Google Scholar 

  • Vágner M.; Vondráková Z.; Fischerová L.; Opatrná J. Norway spruce somatic embryogenesis: membrane rafts as a compromise between liquid and solidified media. In: Hvoslef-Eide A. K.; Preil W. (eds) Liquid Culture Systems for In Vitro Plant Propagation. Springer, Netherlands, pp 295–302; 2005.

    Chapter  Google Scholar 

  • van Winkle S. C.; Pullman G. S. The combined impact of pH and activated carbon on the elemental composition of a liquid conifer embryogenic tissue initiation medium. Plant Cell Rep 22: 303–311; 2003.

    Article  PubMed  Google Scholar 

  • Vestman D.; Larsson E.; Uddenberg D.; Cairney J.; Clapham D.; Sundberg E.; von Arnold S. Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7: 347–362; 2011.

    Article  Google Scholar 

  • von Arnold S.; Sabala I.; Bozhkov P.; Dyachok J.; Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69: 233–249; 2002.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Wendy Peer for help with English corrections. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 0021620858) and the Grant Agency of the Charles University (Grant No. GAUK 656512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Lipavská.

Additional information

Editor: Krystyna Klimazewska

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubeš, M., Drážná, N., Konrádová, H. et al. Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cell.Dev.Biol.-Plant 50, 45–57 (2014). https://doi.org/10.1007/s11627-013-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9589-6

Keywords

Navigation