Skip to main content
Log in

Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Cedrela odorata L. is a valuable tropical tree widely appreciated for its wood. This species confronts serious problems due to both overexploitation of its natural populations and its susceptibility to the Meliaceae borer Hypsipyla grandella, which destroys the apical meristems and produces structural deformations. The rapid introduction of new varieties through clonal forestry has been demonstrated to be the most effective way to improve the production of perennial plantation species. In this work, we report both a protocol for the rejuvenation of elite mature trees of C. odorata and the optimization of an in vitro culture system to scale up micropropagation. Several media formulations and the use of temporary immersion culture in bioreactors were evaluated. The addition of 20% coconut water to TY17 medium increased the number of adventitious shoots from hypocotyl segments to an average number of 4.68 shoots per explant. To replace coconut water and to define the culture medium, several cytokinins were tested at various concentrations; however, none of them produced the effect of coconut water. Rejuvenation of elite mature individuals was investigated by ex vitro grafting of mature tree twigs onto 3-mo-old juvenile trees. Although the grafting had a positive effect on the micropropagation of mature material, the multiplication rate of 1.5 new shoots per explant did not compare to the organogenic capacity of younger materials. Shoot and root elongation as well as acclimatization to ex vitro conditions were carried out in a temporary immersion culture of juvenile material using BioMINT® bioreactors. A 3.5-fold increase in shoot elongation and a 4-fold increase in root elongation were achieved compared to material cultured on semisolid media. Furthermore, this culture system allowed for 98% effectiveness in the soil adaptation of the in vitro-grown plants. The scaled-up multiplication capacity over a period of 6 mo calculated for the system is above 16,000 plants per mother plant with young materials but is only 125 with mature materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Beveridge C. A. Long–distance signaling and a mutational analysis of branching in pea. Plant Growth Regul. 32: 193–203; 2000.

    Article  CAS  Google Scholar 

  • Brand M. H.; Lineberger R. D. In vitro rejuvenation of Betula (Betulaceae): morphological evaluation. Am. J. Bot. 79: 618–625; 1992a.

    Article  Google Scholar 

  • Brand M. H.; Lineberger R. D. In vitro rejuvenation of Betula (Betulaceae): biochemical evaluation. Am. J. Bot. 79: 626–635; 1992b.

    Article  CAS  Google Scholar 

  • Briceño-Vergara A. J. Aproximación hacia un manejo integrado del barrenador de las meliáceas Hypsipyla grandella (Zeller). Rev. For. Ven. 41: 23–28; 1997.

    Google Scholar 

  • Castro R. D.; González O. J. Micropropagación de eucalipto (Eucalyptus grandis Hill ex Maiden) en el sistema de inmersión temporal. Agric. Téc. 62: 68–78; 2002.

    Google Scholar 

  • Cavers S.; Navarro C.; Lowe A. J. Targeting genetic resource conservation in widespread species: a case study of Cedrela odorata L. For. Ecol. Manag. 197: 285–294; 2004.

    Article  Google Scholar 

  • Cerdas L. V.; Dufour M.; Villalobos V. In vitro organogenesis in Albizia guachapele, Cedrela odorata and Swietenia macrophylla (Fabaceae, Meliaceae). Rev. Biol. Trop. 46: 225–228; 1998.

    Google Scholar 

  • Costa-Nunes E. D.; Castilho C. V. D.; Moreno F. N.; Viana A. M. In vitro culture of Cedrela fissilis Vellozo (Meliaceae). Plant Cell. Tiss. Org. Cult. 70: 259–268; 2002.

    Article  Google Scholar 

  • Etienne H.; Berthouly M. Temporary immersion systems in plant micropropagation. Plant Cell. Tiss. Org. Cult. 69: 215–231; 2002.

    Article  Google Scholar 

  • Etienne H.; Lartaud M.; Michaux-Ferriere N.; Carron M. P.; Berthouly M.; Teisson C. Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using temporary immersion technique. In Vitro Cell. Dev. Biol. Plant 33: 81–87; 1997.

    Article  Google Scholar 

  • Fernando J. A.; Vieira M. L. C.; Machado S. R.; Appezzato-da-Glória B. New insights into the in vitro organogenesis process: the case of Passiflora. Plant Cell. Tiss. Organ. Cult. 91: 37–44; 2007.

    Article  Google Scholar 

  • Fouret Y.; Arnaud Y.; Larrieu C. Rajeunissement in vitro du Sequoia sempervirens. In: 1984 Ann. Rech. Syl. AFOCEL, Association Foret–Cellulose, Paris; 1985: 111–137 pp.

  • Franclet A. Rejuvenation: theory and practical experiences in clonal silviculture. In: Zsuffa L.; Rauter R. M.; Yeatman W. W. (eds) Clonal forestry: its impact on tree improvement and our future forests. Canadian Tree Improvement Association, Canada, pp 96–134; 1983.

    Google Scholar 

  • Franclet A.; Boulay M.; Bekkaoui F.; Fouret Y.; Verschoore-Martouzet B.; Walker N. Rejuvenation. In: Bonga J. M.; Durzan D. J. (eds) Cell and tissue culture in forestry: General Principles and Biotechnology. Martinus Nijhoff, Dordrecht, pp 232–248; 1987.

    Google Scholar 

  • Franclet A.; Franclet-Mirvaux M. C. Elimination of topophysis in Sequoia semperviren-clone NP29: a model plant useful to progress in understanding the concept of rejuvenation. In: Proc. of the IUFRO Symposium “Mass production technology for genetically improved fast growing forest tree species”. AFOCEL, Bordeaux; Nangis; 1992: 113–125 pp.

  • Ge L.; Yong J. W.; Goh N. K.; Chia L. S.; Tan S. N.; Ong E. S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography–tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J. Chrom. 829: 26–34; 2005.

    Article  CAS  Google Scholar 

  • Ge L.; Yong J. W.; Tan S. N.; Yang X. H.; Ong E. S. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid–phase extraction. J. Chrom. 1048: 119–126; 2004.

    CAS  Google Scholar 

  • Ge L.; Yong J. W.; Tan S. N.; Yang X. H.; Ong E. S. Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresis–tandem mass spectrometry. Electrophoresis 27: 2171–2181; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Giri C. C.; Shyamkumar B.; Anjaneyulu C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18: 115–135; 2004.

    Google Scholar 

  • Gonzalez-Rodríguez J. A.; Peña-Ramirez Y. J. Establishment of efficient protocols for masive propagation of tropical trees from mesoamerica through somatic embriogenesis: Cedrela odorata, Swietenia macrophylla, Cybistax donell–smithii, Crescentia cujete and Cordia dodecandra. Proc IInd IS on Acclim Establish Microprop Plants Acta Hort 748: 229–234; 2007.

    Google Scholar 

  • Häggman H.; Vuosku J.; Sarjala T.; Jokela A.; Niemi K. Somatic Embryogenesis of pine species: from functional genomics to plantation forestry. Dig. Plant Cell Monogr. 2: 119–140; 2006. doi:10.1007/7089_032.

    Article  Google Scholar 

  • Huang L. C.; Lius S.; Huang B. L.; Murashige T.; Mahdi E. F. M.; Van Gundy R. Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro. Plant Physiol. 98: 166–173; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Huang L. C.; Weng J. H.; Wang C. H.; Kuo C. I.; Shieh Y. J. Photosynthetic potentials of in vitro–grown juvenile, adult, and rejuvenated Sequoia sempervirens (D. Don) Endl. Shoots. Bot. Bull. Acad. Sin. 44: 31–35; 2003.

    Google Scholar 

  • ITTO. International Tropical Timber Organization guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests, ITTO Policy Development Series No 13. ITTO, Yokohama; 2002.

    Google Scholar 

  • ITTO. Tropical Timber Market Report: International Tropical Timber Organization 14. ITTO, Yokohama, pp 1–17; 2009.

    Google Scholar 

  • IUCN. Americas Regional Workshop on Conservation and sustainable management of trees (Cedrela odorata) In IUCN Red list of threatened species. http://www.redlist.org; 2004.

  • Keay R. W. J. The future of the genus Swietenia in its native forest. Bot. J. Linn. Soc. 122: 3–7; 1996.

    Google Scholar 

  • Lloyd G. B.; McCown B. H. Commercially–feasible micropropagation of Mountain laurel, Kalmia latifolia by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30: 421–427; 1981.

    Google Scholar 

  • Lamb D.; Erskine P. D.; Parrotta J. A. Restoration of degraded tropical forest landscapes. Science 310(5754): 1628–1632; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Longman K. A. Rooting cuttings of tropical trees. Tropical trees: propagation and planting manuals, Vol. 1. Commonwealth Science Council, London, pp 1–137; 1993.

    Google Scholar 

  • Maruyama E.; Ishii K.; Saito A.; Migita K. Micropropagation of cedro (Cedrela odorata L.) by shoot tip culture. J. Jpn. For. Soc. 71: 329–331; 1989.

    Google Scholar 

  • Maruyama E.; Kinoshita I.; Ishii K.; Ohba K.; Saito A. Germplasm conservation of the tropical forest trees Cedrela odorata L., Guazuma crinita Mart. and Jacaranda mimosaefolia D. Don. by shoot tip encapsulation in calcium–alginate and storage at 12–25°C. Plant. Cell. Rep. 16: 393–396; 1997a.

    CAS  Google Scholar 

  • Maruyama E.; Kinoshita I.; Ishii K.; Ohba K.; Saito A. Alginate–encapsulated technology for the propagation of the tropical forest trees: Cedrela odorata L., Guazuma crinita Mart. and Jacaranda mimosaefolia D. Don. Silvae Genet. 46: 17–23; 1997b.

    CAS  Google Scholar 

  • Mapelli S.; Kinet J. M. Plant growth regulator and graft control of axillary bud formation and development in the TO-2 mutant tomato. Plant Growth Regul. 11: 385–390; 1992.

    Article  CAS  Google Scholar 

  • Mechada S. M.; Baum B. R.; Jhonson D. A.; Arnason J. T. Direct shoot regeneration from leaf segments of mature plants of Echinacea purpurea (L.) moench. In Vitro Cell. Dev. Biol. Plant 39: 505–509; 2003.

    Article  Google Scholar 

  • Merkle S. A.; Parrott W. A.; Williams A. Application of somatic embryogenesis and embryo cloning. In: Bhojwani S. S. (ed) Plant tissue culture, applications and limitations. Elsevier, Amsterdam, pp 67–101; 1990.

    Google Scholar 

  • Monteuuis O.; Bon M. C. Rejuvenation of a 100 yr old giant sequoia (Sequoiadendron giganteum Buchholz) through in vitro meristem culture. Ann. Sci. For. 46: 183–186; 1989.

    Article  Google Scholar 

  • Moon H. K.; Park S. Y.; Kim Y. W.; Kim S. H. Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree. In Vitro Cell. Dev. Biol. Plant 44: 119–127; 2008.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.

    Google Scholar 

  • Navarro C.; Montagnini F.; Hernandez G. Genetic variability of Cedrela odorata Linnaeus: results of early performance of provenances and families from Mesoamerica grown in association with coffee. For. Ecol. Man 192: 217–227; 2004.

    Article  Google Scholar 

  • Newton A. C.; Leakey R. R. B.; Mesen J. F. Genetic variation in mahoganies: its importance, capture and utilization. Biodiv. Conserv. 2: 114–126; 1993.

    Article  Google Scholar 

  • Newton A. C.; Watt A. D.; Lopez F.; Cornelius J. P.; Mesén J. F.; Corea E. A. Genetic variation in host susceptibility to attack by the mahogany shoot borer, Hypsipyla grandella (Zeller). Agric. For. Entomol. 1: 11–18; 2001.

    Article  Google Scholar 

  • O’Neil G. A.; Dawson I.; Sotelo-Montes C.; Guarino L.; Guari-Guata M.; Current D.; Weber J. C. Strategies for genetic conservation of trees in the Peruvian Amazon. Biodivers. Conserv. 10: 837–850; 2001.

    Google Scholar 

  • Pérez J.; Mesén F.; Hilje L.; Aguilar M. E. Desarrollo de un método de micropropagación aplicable a genotipos selectos de Cedrela odorata L. Optimización de la fase de multiplicación. Rev. For. Centroam. 38: 67–71; 2002.

    Google Scholar 

  • Popielarska-Konieczna M.; Kozieradzka-Kiszkurno M.; Swierczyńska J.; Góralski G.; Slesak H.; Bohdanowicz J. Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm–derived callus culture. Plant Cell. Rep. 27: 1137–1145; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Rahargo S. H. T.; Litz R. E. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell. Tiss. Org. Cult. 89: 113–119; 2002.

    Article  Google Scholar 

  • Robert M. L.; Herrera-Herrera J. L.; Castillo E.; Ojeda G.; Herrera-Alamillo M. A. An efficient method for the micropropagation of agave species. In: Loyola-Vargas V. M.; Vázquez-Flota F. A. (eds) Plant cell culture protocols. Humana, New York, pp 165–178; 2006a.

    Google Scholar 

  • Robert M. L.; Herrera-Herrera J. L.; Herrera-Herrera G.; Herrera-Alamillo M. A.; Fuentes-Carrillo P. A new temporary bioreactor immersion system for micropropagation. In: Loyola-Vargas V. M.; Vázquez-Flota F. A. (eds) Plant cell culture protocols. Humana, New York, pp 121–399; 2006b.

    Google Scholar 

  • Smith R. H. Plant tissue culture: techniques and experiments. 2nd ed. Academic, New York, pp 1–231; 2000.

    Google Scholar 

  • Struve D. K.; Lineberger R. D. Restoration of high adventitious root regeneration potential in mature Betula papyrifera Marsh softwood stem cuttings. Can. J. For. Res. 18: 265–269; 1988.

    Article  Google Scholar 

  • Sutton B. Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann. For. Sci. 59: 657–661; 2002.

    Article  Google Scholar 

  • Timmis R.; Ritchie G. A.; Pullman G. S. Age and position of origin and rootstock effects in Douglas fir plantlet growth and metabolism. Plant Cell. Tiss. Org. Cult. 29: 179–186; 1992.

    Article  Google Scholar 

  • Valdés A. E.; Centeno M. L.; Espinel S.; Fernández B. Could plant hormones be the basis of maturation indices in Pinus radiata? Plant Physiol. Biochem. 40: 211–216; 2002.

    Article  Google Scholar 

  • Valdés A. E.; Centeno M. L.; Fernández B. Changes in the branching pattern of Pinus radiata derived from grafting are supported by variations in the hormonal content. Plant Sci. 165: 1397–1401; 2003a.

    Article  Google Scholar 

  • Valdés A. E.; Fernández B.; Centeno M. L. Alterations in endogenous levels of cytokinins following grafting of Pinus radiata support ratio of cytokinins as an index of ageing and vigour. J. Plant Physiol. 160: 1407–1410; 2003b.

    Article  PubMed  Google Scholar 

  • Valera F. P. Genetic resources of Swietenia and Cedrela in the neotropics: Proposals for coordinated action. Forest Resources Division, Forestry Department, Food and Agriculture Organization of the United Nations, Rome; 1997.

    Google Scholar 

  • Valverde C. L.; Dufour M.; Villalobos V. M. In vitro organogenesis in Albizia guachapele, Cedrela odorata and Swietenia macrophylla (Fabaceae, Meliaceae). Rev. Biol. Trop. 46: 225–228; 1998.

    Google Scholar 

  • Vengadesan G.; Ganapathi A.; Anand R. P.; Anbazhagan R. In vitro organogenesis and plant formation in Acacia sinuate. Plant Cell. Tiss. Org. Cult. 61: 23–28; 2000.

    Article  CAS  Google Scholar 

  • Xavier A.; Santos G. A.; Wendling I.; de Oliveira M. L. Propagação vegetativa de cedro-rosa por miniestaquia. Rev. Árvore 27: 139–143; 2003.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Gil Bor for his helpful advice on the treatment of statistical data. Financial support provided by CONACYT-CONAFOR C03-10013-2003 and ITSA-DIC 2004-1 is gratefully acknowledged. JJG and IGS thanks CONACYT-CONAFOR and CICY for undergraduate studentships. YJPR wish to acknowledge E. Hernández-Domínguez and A. Nila-Méndez for critical review of this paper. YJPR and JAGR wish to thank J. de Leon-Olarte, J. R. Baca-González, and G. Ramírez-Viveros for their executive support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Jorge Peña-Ramírez.

Additional information

Editor: N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña-Ramírez, Y.J., Juárez-Gómez, J., Gómez-López, L. et al. Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cell.Dev.Biol.-Plant 46, 149–160 (2010). https://doi.org/10.1007/s11627-010-9280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9280-0

Keywords

Navigation