Skip to main content
Log in

Adventitious shoot formation in decapitated dicotyledonous seedlings starts with regeneration of abnormal leaves from cells not located in a shoot apical meristem

  • Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Regeneration of new shoots in plant tissue culture is often associated with appearance of abnormally shaped leaves. We used the adventitious shoot regeneration response induced by decapitation (removal of all preformed shoot apical meristems, leaving a single cotyledon) of greenhouse-grown cotyledon-stage seedlings to test the hypothesis that such abnormal leaf formation is a normal regeneration progression following wounding and is not conditioned by tissue culture. To understand why shoot regeneration starts with defective organogenesis, the regeneration response was characterized by morphology and scanning electron and light microscopy in decapitated cotyledon-stage Cucurbita pepo seedlings. Several leaf primordia were observed to regenerate prior to differentiation of a de novo shoot apical meristem from dividing cells on the wound surface. Early regenerating primordia have a greatly distorted structure with dramatically altered dorsoventrality. Aberrant leaf morphogenesis in C. pepo gradually disappears as leaves eventually originate from a de novo adventitious shoot apical meristem, recovering normal phyllotaxis. Similarly, following comparable decapitation of seedlings from a number of families (Chenopodiaceae, Compositae, Convolvulaceae, Cucurbitaceae, Cruciferae, Fabaceae, Malvaceae, Papaveraceae, and Solanaceae) of several dicotyledonous clades (Ranunculales, Caryophyllales, Asterids, and Rosids), stems are regenerated bearing abnormal leaves; the normal leaf shape is gradually recovered. Some of the transient leaf developmental defects observed are similar to responses to mutations in leaf shape or shoot apical meristem function. Many species temporarily express this leaf development pathway, which is manifest in exceptional circumstances such as during recovery from excision of all preformed shoot meristems of a seedling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams J. Adventitious shoots on hypocotyl of flax and tomato. Bot Gaz 78: 461–462; 1924.

    Article  Google Scholar 

  • Aida M.; Ishida T.; Tasaka M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563–1570; 1999.

    CAS  PubMed  Google Scholar 

  • Amutha S.; Muruganantham M.; Ganapathi A. Thidiazuron-induced high-frequency axillary and adventitious shoot regeneration in Vigna radiata (L.) Wilczek. In Vitro Cell Dev Biol Plant 42: 26–30; 2006.

    Article  CAS  Google Scholar 

  • Ananthakrishnan G.; Xia X.; Elman C.; Singer S.; Paris H.; Gal-On A.; Gaba V. Shoot production in squash (Cucurbita pepo) by in vitro organogenesis. Plant Cell Rep 21: 739–746; 2003.

    CAS  PubMed  Google Scholar 

  • Bain H. F. Origin of adventitious shoots in decapitated cranberry seedlings. Bot Gaz 101: 872–880; 1940.

    Article  Google Scholar 

  • Barton M. K.; Poethig R. S. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823–831; 1993.

    Google Scholar 

  • Black M.; Shuttleworth J. E. The role of cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117: 57–66; 1974.

    Article  Google Scholar 

  • Bowes B. G. Polar regeneration in excised roots of Taraxacum officinale weber: a light and electron microscopic study. Ann Bot 40: 423–432; 1976.

    Google Scholar 

  • Byrne M. E.; Barley R.; Curtis M.; Arroyo J. M.; Dunham M.; Hudson A.; Martienssen R. A. Asymmetric leaves 1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408: 967–971; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Costerus J. C.; Smith J. J. Studies in tropical teratology. Ann Jard Bot 13: 97–118; 1896.

    Google Scholar 

  • Cutter E. G. Plant anatomy. Part II. Organs. Edward Arnold, London; 1971.

    Google Scholar 

  • Emory J. F.; Floyd S. K.; Alvarez J.; Eshed Y.; Hawker N. P.; Izhaki A.; Baum S. F.; Bowman J. L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANDI genes. Curr Biol 13: 1768–1774; 2003.

    Article  Google Scholar 

  • Esau K. E. Anatomy of seed plants. Wiley, New York; 1960.

    Google Scholar 

  • Eshed Y.; Schwab R.; Carrington J. C.; Weigel D. Establishment of polarity in lateral organs of Arabidopsis. Curr Biol 11: 1251–1260; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Gaba V.; Black M.; Canaani O.; Attridge T. H. Photocontrol of hypocotyl elongation in light-grown Cucumis sativus L. Photosynthetic requirement for a fluence rate dependent phytochrome response. Photochem Photobiol 53: 399–405; 1991.

    Article  CAS  Google Scholar 

  • Gaba V.; Schlarman E.; Elman C.; Sagee O.; Watad A. A.; Gray D. J. In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons. In Vitro Cell Dev Biol Plant 35: 1–7; 1999.

    Google Scholar 

  • Hus H. Fasciations of known causation. Amer Nat 42: 81–97; 1908.

    Article  Google Scholar 

  • Huetteman C. A.; Preece J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Organ Cult 33: 105–119; 1993.

    Article  CAS  Google Scholar 

  • Kamenetsky R.; Rabinowitch H. D. Floral development in bolting garlic. Sex Plant Reprod 13: 235–241; 2001.

    Article  Google Scholar 

  • Keller T.; Abbott J.; Moritz T.; Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18: 598–611; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kitin P.; Iliev I.; Scaltsoyiannes A.; Nellas C.; Rubos A.; Funada R. A comparative histological study between normal and fasciated shoots of Prunus avium generated in vitro. Plant Cell Tiss Organ Cult 82: 141–150; 2005.

    Article  Google Scholar 

  • Kuzoff R. K.; Gasser C. S. Recent progress in reconstructing angiosperm phylogeny. Trends Plant Sci 8: 330–335; 2000.

    Article  Google Scholar 

  • Lamotte C. E.; Curry T. M.; Palmer R. D.; Alberstsen M. C. Developmental anatomy and morphology of fasciation in soybean (Glycine max). Bot Gaz 149: 398–407; 1988.

    Article  Google Scholar 

  • Laufs P.; Peaucelle A.; Morin H.; Traas J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131: 4311–4322; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lurie S.; Zhou H. W.; Lers A.; Sonego L.; Alexandrov S.; Shomer I. Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant 119: 287–294; 2003.

    Article  CAS  Google Scholar 

  • Masters M. T. Vegetable teratology, an account of the principle deviations from the usual construction of plants. Robert Hardwicke (Ray Society), London; 1869.

    Google Scholar 

  • McConnell J. R.; Barton M. K. Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev Genet 16: 358–366; 1995.

    Article  Google Scholar 

  • Mendel K. A case of regeneration of the growing point at the hypocotyl. Palest J Bot Rehovot Ser 2: 89–92; 1938.

    Google Scholar 

  • Naylor E. The proliferation of dandelions from roots. Bull Torrey Bot Club 68: 351–358; 1941.

    Article  Google Scholar 

  • Norberg M.; Holmlund M.; Nilsson O. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132: 2203–2213; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan K.; Cantliffe D. J.; Harrell R. C.; McConnell D. B. A comparison of shoot-forming and non-shoot-forming somatic embryos of sweet potato [Ipomea batatas (L.) Lam.] using computer vision histological analysis. Plant Cell Rep 17: 685–692; 1998.

    Article  CAS  Google Scholar 

  • Palatnik J. F.; Allen E.; Wu X.; Schommer C.; Baum S. F.; Perea J. V.; Bowman J. L. Control of leaf development by microRNAs. Nature 425: 257–263; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Poethig R. S. Leaf morphogenesis in flowering plants. Plant Cell 9: 1077–1087; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Pozueta-Romero J.; Houlne G.; Canas L.; Schantz R.; Chamarro J. Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell Tiss Organ Cult 67: 173–180; 2001.

    Article  CAS  Google Scholar 

  • Ramage C. M.; Williams R. R. Cytokinin-induced abnormal shoot organogenesis is associated with elevated Knotted1-type homeobox gene expression in tobacco. Plant Cell Rep 22: 919–924; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sachs J (1859) Physiologische Versuche uber die Keimung der Schminkbohne (Phaseolus multiflorus). Sitzungsber. d. k .k. Akad. d. Wiss. in Wein 37:57

  • Sachs T. Regeneration experiments on the determination of the form of leaves. Isr J Botan 18: 21–30; 1969.

    Google Scholar 

  • Sattler R.; Maier U. Development of epiphyllous appendages of Begonia hispida var. cucullifera—implications for comparative morphology. Can J Bot 55: 411–425; 1977.

    Article  Google Scholar 

  • Selker J. M. L.; Lyndon R. F. Leaf initiation and de novo pattern formation in the absence of an apical meristem and pre-existing patterned leaves in watercress (Nasturtium officinale) axillary explants. Can J Bot 74: 625–641; 1996.

    Google Scholar 

  • Shomer I.; Kaaber L. Intercellular adhesion strengthening as studied through stimulated stress by organic acid molecules in potato (Solanum tuberosum L.) tuber parenchyma. Biomacromolecules 7: 2971–2982; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Snow M.; Snow R. The dorsiventrality of leaf primordia. New Phytol 58: 188–207; 1959.

    Article  Google Scholar 

  • Steinitz B.; Amitay A.; Gaba V.; Tabib Y.; Keller M.; Levin I. A simple plant regeneration-ability assay in a range of Lycopersicon species. Plant Cell Tiss Organ Cult 84: 269–278; 2006.

    Article  Google Scholar 

  • Steinitz B.; Küsek M.; Tabib Y.; Paran I.; Zelcer A. Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cell Dev Biol Plant 39: 296–303; 2003.

    Article  CAS  Google Scholar 

  • Sussex I. M. Morphogenesis in Solanum tuberosum L.: experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphol 5: 286–300; 1955.

    Google Scholar 

  • Treml B. S.; Winderl S.; Radykewicz R.; Herz M.; Schweizer G.; Hutzler P.; Glawischnig E.; Ruiz R. A. T. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 132: 4063–4074; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Venverloo C. J. The formation of adventitious organs. I. Cytokinin-induced formation of leaves and shoots in callus cultures of Populus nigra L. ‘Italica’. Acta Bot Neerl 22: 390–398; 1973.

    CAS  Google Scholar 

  • White O. E. Fasciation. Bot Rev 14: 319–358; 1948.

    Article  Google Scholar 

  • Wolf D.; Matzevitch T.; Steinitz B.; Zelcer A. Why is it difficult to obtain transgenic pepper plants? Acta Hortic 560: 229–233; 2001.

    CAS  Google Scholar 

Download references

Acknowledgments

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 506/06. This work was partially supported by a Research Grant from the Ministry of Agriculture and Rural Development, Israel, to V.G. K. Kathiravan received a BOYSCAST Fellowship from the Ministry of Science and Technology, Government of India. S.A. was supported by the MASHAV program of the Ministry of Foreign Affairs, Israel. The authors thank Dr. Moshe Lapidot, ARO Volcani Center, for the use of greenhouse facilities and Naomi Bahat, EM Unit, Faculty of Agriculture, the Hebrew University of Jerusalem, Rehovot, for skilled technical assistance. The authors thank Prof. Simcha Lev-Yadun for critical comments on the ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gaba.

Additional information

Editor: D. T. Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amutha, S., Kathiravan, K., Singer, S. et al. Adventitious shoot formation in decapitated dicotyledonous seedlings starts with regeneration of abnormal leaves from cells not located in a shoot apical meristem. In Vitro Cell.Dev.Biol.-Plant 45, 758–768 (2009). https://doi.org/10.1007/s11627-009-9232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9232-8

Keywords

Navigation