Skip to main content

Advertisement

Log in

The Brazilian experience of sugarcane ethanol industry

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Biomass has gained prominence in the last few years as one of the most important renewable energy sources. In Brazil, a sugarcane ethanol program called ProAlcohol was designed to supply the liquid gasoline substitution and has been running for the last 30 yr. The federal government’s establishment of ProAlcohol in 1975 created the grounds for the development of a sugarcane industry that currently is one of the most efficient systems for the conversion of photosynthate into different forms of energy. Improvement of industrial processes along with strong sugarcane breeding programs brought technologies that currently support a cropland of 7 million hectares of sugarcane with an average yield of 75 tons/ha. From the beginning of ProAlcohol to the present time, ethanol yield has grown from 2,500 to around 7,000 l/ha. New technologies for energy production from crushed sugarcane stalk are currently supplying 15% of the electricity needs of the country. Projections show that sugarcane could supply over 30% of Brazil’s energy needs by 2020. In this review, we briefly describe some historic facts of the ethanol industry, the role of sugarcane breeding, and the prospects of sugarcane biotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Alexander A. G. The energy cane alternative. Elsevier, Amsterdam; 1985.

    Google Scholar 

  • Amaral W. A. N.; Marinho J. P.; Tarasantchi R.; Beber A.; Giuliani E. Environmental sustainability of sugarcane ethanol in Brazil. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 113–138; 2008.

    Google Scholar 

  • Andrietta M. G. S.; Andrietta S. R.; Steckelberg C.; Stupiello E. N. A. Bioethanol—Brazil, 30 years of Proalcool. Int. Sugar J 109: 195–200; 2007.

    CAS  Google Scholar 

  • ANFAVEA. Produção de autoveículos por tipo e combustível, 2008. http://www.anfavea.com.br/tabelas.html. Cited Feb. 16, 2009.

  • Arruda P. Sugarcane transcriptome. A landmark in plant genomics in the tropics. Genet. Mol. Biol. 24: 1; 2001.

    Google Scholar 

  • Berding N.; Roach B. T. Germplasm collection, maintenance, and use. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210; 1987.

    Google Scholar 

  • Bergamin Filho A.; Amorim L. Doenças de Plantas Tropicais: Epidemiologia e Controle Econômico. Ed. Agronômica Ceres, São Paulo; 1996.

    Google Scholar 

  • BNDES (2008) Bioetanol de Cana-de-açúcar. Energia para o Desenvolvimento Sustentável. BNDES, Rio de Janeiro. http://www.bioetanoldecana.org. Cited Nov. 11, 2008

  • Boddey R. Green energy from sugar cane. Chem. Ind 10: 355–358; 1993.

    Google Scholar 

  • Borges J. C.; Cagliari T. C.; Ramos C. H. I. Expression and variability of molecular chaperones in the sugarcane expressome. J. Plant Physiol 164: 505–513; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Calsa T.; Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C-4 metabolism and putative antisense transcripts. Plant Mol. Biol 63: 745–762; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Cox P. M.; Betts R. A.; Jones C. D.; Spall S. A.; Totterdell I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Chu S.; Goldemberg J.; Arungu Olende S.; El-Ashry M.; Davis G.; Johansson T.; Keith D.; Jinghai L.; Nakicenovic N.; Pachauri R.; Shafie-Pour M.; Shpilrain E.; Socolow R.; Yamaji J.; Luguang Y. Lighting the way: Toward a sustainable energy future. Inter Academy Council, Amsterdam; 2007.

    Google Scholar 

  • D’Hont A.; Grivet L.; Feldmann P.; Rao S.; Berding N.; Glaszmann J. C. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp) by molecular cytogenetics. Mol. Gen. Genet 250: 405–413; 1996.

    PubMed  Google Scholar 

  • D’Hont A.; Ison D.; Alix K.; Roux C.; Glaszmann J. C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41: 221–225; 1998.

    Article  Google Scholar 

  • da Silva J. A. G.; Bressiani J. A. Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet. Mol. Biol 28: 294–298; 2005.

    Google Scholar 

  • Falco M. C.; Tullman Neto A.; Ulian E. C. Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19: 1188–1194; 2000.

    Article  CAS  Google Scholar 

  • FAO The State of Food and Agriculture. Part I. Biofuels: Prospects, risks and opportunities. FAO Agriculture Series no. 39. FAO, Rome; 2008.

    Google Scholar 

  • Fischer G.; Teixeira E.; Hizsnyik E. T.; Velthuizen H. Land use dynamics and sugarcane production. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 29–62; 2008.

    Google Scholar 

  • Garcia A. A. F.; Kido E. A.; Meza A. N.; Souza H. M. B.; Pinto L. R.; Pastina M. M.; Leite C. S.; da Silva J. A. G.; Ulian E. C.; Figueira A.; Souza A. P. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor. Appl. Genet 112: 298–314; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J. Ethanol for a sustainable energy future. Science 315: 808–810; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J. The Brazilian biofuels industry. Biotechnol Biofuels 1: 6; 2008. doi:10.1186/1754-6834-1-6.

    PubMed  Google Scholar 

  • Goldemberg J.; Coelho S. T.; Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy 36: 2086–2097; 2008.

    Article  Google Scholar 

  • Grivet L.; Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol 5: 122–127; 2001.

    Article  Google Scholar 

  • Ha S.; Moore P. H.; Heinz D.; Kato S.; Ohmido N.; Fukui K. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol. Biol 39: 1165–1173; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hailing P.; Simms-Borre P. Overview of lignocellulosic feedstock conversion into ethanol—focus on sugarcane bagasse. Int. Sugar J 110: 191–194; 2008.

    Google Scholar 

  • Hansen J.; Nazarenko L.; Ruedy R.; Sato M.; Willis J.; Del Genio A.; Koch D.; Lacis A.; Lo K.; Menon S.; Novakov T.; Perlwitz J.; Russell G.; Schmidt G. A.; Tausnev N. Earth’s energy imbalance: Confirmation and implications. Science 308: 1431–1435; 2005.

    Article  PubMed  CAS  Google Scholar 

  • IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Agropecuario, 2006. www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/2006/default. htm. Cited Feb 5 2009.

  • Jank, M. S. Cane for sugar, ethanol and bioelectricity: a global economy. UNICA, the Brazilian Sugarcane Industry. http://www.unica.com.br Cited; 2008.

  • Jannoo N.; Grivet L.; Seguin M.; Paulet F.; Domaingue R.; Rao P. S.; Dookun A.; D’Hont A.; Glaszmann J. C. Molecular investigation of the genetic base of sugarcane cultivars. Theor. Appl. Genet 99: 171–184; 1999.

    Article  CAS  Google Scholar 

  • Kheshgi H. S.; Prince R. C.; Marland G. The potential of biomass fuels in the context of global climate change: Focus on transportation fuels. Ann. Rev. Energy Environ 25: 199–244; 2000.

    Article  Google Scholar 

  • Landell M. G. A.; Bressiani J. A. Melhoramento genético, caracterização e manejo varietal. In: Dinardo-Miranda L. L. et al. (eds) Cana-de-açúcar. Instituto Agronômico, Campinas, pp 101–155; 2008.

    Google Scholar 

  • Lima M. L. A.; Garcia A. A. F.; Oliveira K. M.; Matsuoka S.; Arizono H.; de Souza C. L.; de Souza A. P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet 104: 30–38; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y. H.; D’Hont A.; Paulet F.; Grivet L.; Arnaud M.; Glaszmann J. C. Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78: 217–226; 1994.

    Article  Google Scholar 

  • Maccheroni, W.; Jordão, H.; Degaspari, R.; Moura, G. L.; Matsuoka, S. Development of a dependable microsatellite-based fingerprinting system for sugarcane. Sugar Cane Int. 27: 47–52; 2009.

    Google Scholar 

  • Macedo I. C. Greenhouse gas emissions and energy balance in bioethanol production and utilization in Brazil. Biomass Bioenergy 14: 77–81; 1998.

    Article  Google Scholar 

  • Macedo I. C.; Seabra E. A. Mitigation of GHG emissions using sugarcane bioethanol. In: Zuurbier P.; van de Vooren J. (eds) Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen, pp 95–111; 2008.

    Google Scholar 

  • Machado, Jr. G. R.; Silva, W. M.; Irvine, J. E. Sugarcane breeding in Brazil: The Copersucar program. In: Copersucar International Sugarcane Breeding Workshop São Paulo, Copersucar, pp 217–232; 1987.

  • Mangelsdorf A. J. Um programa de melhoramento da cana-de-açúcar para a agroindústria canavieira do Brasil. Brasil Açucar 69: 208–223; 1967.

    Google Scholar 

  • Martines-Filho, J.; Burnquist, H. L.; Vian, C. E. F. Bioenergy and the rise of sugarcane-based ethanol in Brazil. Choices, AAEA, 2nd Quarter, http://www.choicesmagazine.org; 2006.

  • Matsuoka S. The recent evolution of sugarcane varieties in Brazil. STAB 17: 37; 1999.

    Google Scholar 

  • Matsuoka S.; Bassinello A. I.; Martins S.; Arizono H. A retrospective analysis of crop damage caused by sugarcane rust in Brazil. II. Losses in spring planted cane. In: Rao G. P. et al. (ed) Current trends in sugarcane pathology. International Books and Periodicals Supply Service, New Delhi, pp 27–35; 1994.

    Google Scholar 

  • Matsuoka, S.; Garcia, A. A. F.; Arizono, H. Melhoramento da cana-de-açúcar. In: Borém A (ed) Melhoramento de Espécies Cultivadas. Editora UFV, Viçosa, Minas Gerais, 2nd ed, pp 225–274; 2005.

  • Matsuoka S.; Meneghin S. P. Yellow leaf syndrome and alleged pathogen: casual and not causal relationship. Proc. ISSCT Congress 23: 382–389; 1999.

    Google Scholar 

  • MME – Ministério das Minas e Energia. Matriz energética 2007 Brasil. http://www. mme.gov.br Cited Jan. 12, 2009; 2008.

  • Moreira J. R.; Goldemberg J. The alcohol program. Energy Policy 27: 227–229l; 1999.

    Article  Google Scholar 

  • Natale Netto J. A Saga do Álcool. Novo Século Editora, Osasco; 2005.

    Google Scholar 

  • Nemir A. S. Alcohol fuels—the Brazilian experience and its implications for the United States. Sugar J 45: 10–13; 1983.

    Google Scholar 

  • Nogueira F. T. S.; de Rosa V. E.; Menossi M.; Ulian E. C.; Arruda P. RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132: 1811–1824; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nogueira F. T. S.; Schlogl P. S.; Camargo S. R. et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169: 93–106; 2005.

    Article  CAS  Google Scholar 

  • Oliveira K. M.; Pinto L. R.; Marconi T. G.; Margarido G. R. A.; Pastina M. M.; Teixeira L. H. M.; Figueira A. V.; Ulian E. C.; Garcia A. A. F.; Souza A. P. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol. Breed 20: 189–208; 2007.

    Article  CAS  Google Scholar 

  • Papini-Terzi F. S.; Rocha F. R.; Vencio R. Z. N.; Oliveira K. C.; Felix J. D.; Vicentini R.; Rocha C. D.; Simoes A. C. Q.; Ulian E. C.; Di Mauro S. M. Z.; Da Silva A. M.; Pereira C. A. D.; Menossi M.; Souza G. M. Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Research 12: 27–38; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Pinto L. R.; Oliveira K. M.; Marconi T.; Garcia A. A. F.; Ulian E. C.; de Souza A. P. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125: 378–384; 2006.

    Article  CAS  Google Scholar 

  • Pinto L. R.; Oliveira K. M.; Ulian E. C.; Garcia A. A. F.; de Souza A. P. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47: 795–804; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rocha F. R.; Papini-Terzi F. S.; Nishiyama M. Y.; Vencio R. Z. N.; Vicentini R.; Duarte R. D. C.; de Rosa V. E.; Vinagre F.; Barsalobres C.; Medeiros A. H.; Rodrigues F. A.; Ulian E. C.; Zingaretti S. M.; Galbiatti J. A.; Almeida R. S.; Figueira A. V. O.; Hemerly A. S.; Silva-Filho M. C.; Menossi M.; Souza G. M. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 8: 71; 2007.

    Article  PubMed  Google Scholar 

  • Rosillo-Calle F. A re-assessment of the Brazilian National Alcohol Programme (PNA). Ind. Biotech 3: 11–16; 1984.

    Google Scholar 

  • Rosillo-Calle F.; Cortez L. A. B. Towards ProAlcool II—a review of the Brazilian bioethanol programme. Biomass Bioenergy 14: 115–124; 1998.

    Article  CAS  Google Scholar 

  • Rossi M.; Araujo P. G.; Paulet F.; Garsmeur O.; Dias V. M.; Chen H.; Van Sluys M. A.; D’Hont A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol. Genet. Genom 269: 406–419; 2003.

    Article  CAS  Google Scholar 

  • Scaramucci J. A.; Perin C.; Pulino P. et al. Energy from sugarcane bagasse under electricity rationing in Brazil: a computable general equilibrium model. Energy Policy 34: 986–992; 2006.

    Article  Google Scholar 

  • Somerville C. The billion-ton biofuels vision. Science 312: 1277; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasan T. V.; Ahloowalia B. S.; Heinz D. J. Cytogenetics. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253; 1987.

    Google Scholar 

  • Stevenson G. C. Genetics and breeding of sugarcane. Longmans, London. 1965.

    Google Scholar 

  • Sticklen M. B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet 9: 433–443; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tew T. L. New varieties. In: Heinz D. J. (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594; 1987.

    Google Scholar 

  • Vettore A. L.; da Silva F. R.; Kemper E. L. et al. The libraries that made SUCEST. Genet. Mol. Biol. 24: 1–7; 2001.

    Article  CAS  Google Scholar 

  • Vettore A. L.; da Silva F. R.; Kemper E. L. et al. Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res. 13: 2725–2735; 2003.

    Article  PubMed  Google Scholar 

  • Xavier M.R. The Brazilian sugarcane ethanol experience. Competitive Enterprise Institute, Washington, DC200714p. http://www.cei.org.

    Google Scholar 

  • Yuan J. S.; Tiller K. H.; Al-Ahmad H.; Stewart N. R.; Stewart C. N. Plants to power: Bioenergy to fuel the future. Trend Plant Sci. 13: 421–429; 2008.

    Article  CAS  Google Scholar 

  • Walter A. Cortez, L. An historical overview of the Brazilian bioethanol program. Renew. Energy Dev. 11no. 1: 1–4; 1999.

    Google Scholar 

  • Wigley T. M. L. The climate change commitment. Science 307: 1766–1769; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zuurbier P.; van de Vooren J. Sugarcane ethanol: Contribution to climate change mitigation and the environment. Wageningen Academic, Wageningen; 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Arruda.

Additional information

Editors: P. Lakshmanan; D. Songstad

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, S., Ferro, J. & Arruda, P. The Brazilian experience of sugarcane ethanol industry. In Vitro Cell.Dev.Biol.-Plant 45, 372–381 (2009). https://doi.org/10.1007/s11627-009-9220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9220-z

Keywords

Navigation