Skip to main content
Log in

Extracellular localization of napin in the embryogenic tissues of Brassica napus spp. oleifera

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Napin, a storage protein, has been reported to be transcribed abundantly during the pre-embryogenic stage and associated with the induction of Brassica napus secondary embryogenesis. In this study, we studied the distribution pattern of napin in the winter oilseed rape embryogenic tissue in comparison to that of the non-embryogenic tissue using the indirect immunofluorescence localisation coupled with the ultrastructural immunogold labelling techniques. Immunolocalisation studies revealed that the extracellular matrix layer outside the outer epidermal cell wall of B. napus embryogenic tissues contained napin. This is the first study to report the extracellular localisation of napin. In addition, we have also further characterised the expression pattern of Eg1 that encodes for napin in the B. napus embryogenic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Barciszewski J.; Szymanski M.; Haertle T. Minireview: analysis of rape seed napin structure and potential roles of the storage protein. J. Protein Chem. 19: 249–254; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K.; Gines M. -J.; DeMoor J. M.; Huang B.; Baszczynski C. L.; Iyer V. N.; Miki B. L. Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol. Biol. 26: 1711–1723; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Byczynska A.; Barciszewski J. The biosynthesis, structure and properties of napin—the storage protein from rape seeds. J. Plant Physiol. 154: 417–425; 1999.

    CAS  Google Scholar 

  • Chomczynski P.; Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Crouch M. L.; Tenbarge K. M.; Simon A. E.; Ferl R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J. Mol. Appl. Genet. 2: 273–283; 1983.

    PubMed  CAS  Google Scholar 

  • Ellerstrom M.; Stalberg K.; Ezcurra I.; Rask L. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 32: 1019–27; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Fleming A. J.; Hanke D. E. The regulation of napin gene expression in secondary embryos of Brassica napus. Physiol. Plant. 87: 396–402; 1993.

    Article  CAS  Google Scholar 

  • Herman E. M.; Larkins B. A. Protein storage bodies and vacuoles. Plant Cell 11: 601–613; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Higgins T. J. V. Synthesis and regulation of major proteins in seeds. Ann. Rev. Plant Physiol. 35: 191–221; 1984.

    CAS  Google Scholar 

  • Higgins T. J. V.; Newbigin E. J.; Spender D.; Llewellyn D. J.; Craig S. The sequence of a pea vicilin gene and its expression in transgenic tobacco plants. Plant Mol. Biol. 11: 683–695; 1988.

    Article  CAS  Google Scholar 

  • Hoglund, A. S.; Rodin, J.; Larsson, E.; Rask, L. Distribution of napin and cruciferin in developing rape seeds embryos. Plant Physiol. 98: 509–515; 1992.

    Article  PubMed  Google Scholar 

  • Kermode A. R. Mechanisms of intracellular protein transport and targeting in plant cells. Crit. Rev. Plant Sci. 15: 285–423; 1996.

    CAS  Google Scholar 

  • Kohno-Murase J.; Murase M.; Ichikawa H.; Imamura J. Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol. Biol. 26: 1115–1124; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Loh C. S.; Ingram D. S. Production of haploid plants from anther cultures and secondary embryos of winter oilseed rape Brassica napus ssp. oleifera. New Phytol. 91: 507–516; 1982.

    Article  Google Scholar 

  • Loh C. S.; Ingram D. S. The response of haploid secondary embryos and secondary embryogenic tissues of winter oilseed rape to treatment with colchicines. New Phytol. 95: 359–366; 1983.

    Article  Google Scholar 

  • Monsalve R. I.; Gonzalez de la Pena M. A.; Menendez-Arias L.; Lopez-Otin C.; Villalba M.; Rodriguez R. Characterization of a new oriental-mustard (Brassica juncea) allergen, Bra j IE: detection of an allergenic epitope. Biochem. J. 293: 625–632; 1993.

    PubMed  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Murphy D. J.; Cummins I.; Kang A. S. Synthesis of the major oil-body membrane protein in developing rapeseed (Brassica napus) embryos. Integration with storage-lipid and storage-protein synthesis and implications for the mechanism of oil-body formation. Biochem. J. 258: 285–293; 1989.

    PubMed  CAS  Google Scholar 

  • Namasivayam, P. Molecular & cell biological study of winter oilseed rape (Brassica napus L. spp. oleifera) embryogenic cultures, Ph.D. thesis. University of Cambridge, UK; 2004.

  • Namasivayam P.; Hanke D. Identification of differentially expressed sequences in pre-embryogenic tissue of oilseed rape by suppression subtractive hybridisation (SSH) plant. Plant Cell Tissue Organ Cult. 863: 417–421; 2006.

    Article  CAS  Google Scholar 

  • Namasivayam P.; Skepper J.; Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp oleifera embryogenic tissue. Plant Cell Rep. 25: 887–895; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Neumann G. M.; Condron R.; Polya G. M. Purification and sequencing of yellow mustard seed napin small and large chains that are phosphorylated by plant calcium-dependent protein kinase and are calmodulin antagonists. Plant Sci. 119: 49–66; 1996a.

    Article  CAS  Google Scholar 

  • Neumann G. M.; Condron R.; Thomas I.; Polya G. M. Purification and sequencing of multiple forms of Brassica napus seed napin small chains that are calmodulin antagonists and substrates for plant calcium-dependent protein kinase. Biochim. Biophys. Acta 1295: 23–33; 1996b.

    PubMed  Google Scholar 

  • Neumann G. M.; Condron R.; Thomas I.; Polya G. M. Purification and sequencing of multiple forms of Brassica napus seed napin large chains that are calmodulin antagonists and substrates for plant calcium-dependent protein kinase. Biochim. Biophys. Acta 1295: 34–43; 1996c.

    PubMed  Google Scholar 

  • Polya G. M. The structure and sites of action of plant defensive proteins. Rec. Res. Dev. Phytochem. 1: 95–110; 1997.

    Google Scholar 

  • Polya G. M.; Chandra S.; Condron R. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase. Plant Physiol. 101: 545–551; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds E. S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17: 208; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J.; Fritsch E. F.; Maniatis T. Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor Press, New York, USA; 1989.

    Google Scholar 

  • Scarafoni A.; Carzaniga R.; Harris N.; Croy R. R. D. Manipulation of the napin primary structure alters its packaging and deposition in transgenic tobacco (Nicotiana tabacum L.) seeds. Plant Mol. Biol. 46: 727–739; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Shimada T.; Yamada K.; Kataoka M.; Nakaune S.; Koumoto Y.; Kuroyanagi M.; Tabata S.; Kato T.; Shinozaki K.; Seki M.; Kobayashi M.; Kondo M.; Nishimura M.; Hara-Nishimura I. Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J. Biol. Chem. 278: 32292–32299; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Shu W.; Loh C. S. Secondary embryogenesis in long term cultures of winter oilseed rape, rape Brassica napus ssp. oleifera. New Phytol. 107: 39–46; 1987.

    Article  Google Scholar 

  • Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Stalberg K.; Ellerstrom M.; Ezcurra I.; Rask L. Deletion analysis of a 2S storage protein promoter of Brassica napus in transgenic tobacco. J. Cell Biochem. Suppl. 18A: 101–107; 1993.

    Google Scholar 

  • Terras F.; Schoofs H.; Thevissen K.; Osborn R. W.; Vanderleyden J.; Cammue B.; Broekaert W. F. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol. 103: 1311–1319; 1993.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Ms. Janet Powell (Multi-Imaging Centre, Department of Physiology Development and Neuroscience, Anatomy Building, University of Cambridge, UK) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswari Namasivayam.

Additional information

Editor: Gregory C. Philips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namasivayam, P., Skepper, J. & Hanke, D. Extracellular localization of napin in the embryogenic tissues of Brassica napus spp. oleifera . In Vitro Cell.Dev.Biol.-Plant 44, 273–281 (2008). https://doi.org/10.1007/s11627-008-9128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9128-z

Keywords

Navigation