Skip to main content

Advertisement

Log in

Agrobacterium rhizogenes: recent developments and promising applications

  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure. 10.

Similar content being viewed by others

References

  • Ackermann, C. Pflanzen aus Agrobacterium rhizogenes–Tumoren an Nicotiana tabacum. Plant Sci Lett 8:23–30; 1977

    Google Scholar 

  • Agostini, E.; Coniglio, M.S.; Milrad, S.R.; Tigier, H.A.; Giulietti, A.M. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37:139–144; 2003

    PubMed  CAS  Google Scholar 

  • Akasaka, Y.; Mii, M.; Daimon, H. Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81:355–362; 1998

    Google Scholar 

  • Alpizar, E.; Dechamp, E.; Espeout, S.; Royer, M.; Lecouls, A.C.; Nicole, M.; Bertrand, B.; Lashermes, P.; Etienne, H. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967; 2006

    PubMed  CAS  Google Scholar 

  • Azlan, G.J.; Marziah, M.; Radzali, M.; Johari, R. Establishment of Physalis minima hairy roots culture for the production of physalins. Plant Cell Tissue Organ Cult 69:271–278; 2002

    Google Scholar 

  • Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.; Bollinger, W.H. Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160; 1985

    PubMed  CAS  Google Scholar 

  • Bellincampi, D.; Cardarelli, M.; Zaghi, D.; Serino, G.; Salvi, G.; Gatz, C.; Cervone, F.; Altamura, M.M.; Constantino, P.; De-Lorenzo, G. Oligogalacturonides prevent rhizogenesis in rolB transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 84:77–487; 1996

    PubMed  CAS  Google Scholar 

  • Bettini, P.; Michelotti, S.; Bindi, D.; Giannini, R.; Capuana, M.; Buiatti, M. Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 107:831–836; 2003

    PubMed  CAS  Google Scholar 

  • Binns, A.N.; Chen, R.H.; Wood, H.N.; Lynn, D.G. Cell division promoting activity of naturally occurring dehydroconiferyl glucosides: do cell wall components control cell division? Proc Natl Acad Sci U S A 84:980–984; 1987

    PubMed  CAS  Google Scholar 

  • Boisson-Dernier, A.; Chabaud, M.; Garcia, F.; Becard, G.; Rosenberg, C.; Barker, D.G. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700; 2001

    PubMed  CAS  Google Scholar 

  • Boominathan, R.; Doran, P.M. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167; 2003a

    PubMed  CAS  Google Scholar 

  • Boominathan, R.; Doran, P.M. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146; 2003b

    PubMed  CAS  Google Scholar 

  • Boominathan, R.; Saha-Chaudhury, N.M.; Sahajwalla, V.; Doran, P.M. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining, Biotechnol Bioeng 862:43–250; 2004

    PubMed  CAS  Google Scholar 

  • Cai, G.; Li, G.; Ye, H. Hairy root culture of Artemisia annua L. by Ri plasmid transformation and biosynthesis of artemisinin. Chin J Biotechnol 11:227–235; 1995

    PubMed  CAS  Google Scholar 

  • Capone, I.; Spanò, L.; Cardarelli, M.; Bellincampi, D.; Petit, A.; Costantino, P. Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52; 1989

    PubMed  CAS  Google Scholar 

  • Cardarelli, M.; Spanò, L.; De Paolis, A.; Mauro M.L.; Vitali, G.; Costantino, P. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5:385–391; 1985

    CAS  Google Scholar 

  • Cardarelli, M.; Mariotti, D.; Pomponi, M.; Spanò, L.; Capone, I.; Costantino, P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475–480; 1987a

    PubMed  CAS  Google Scholar 

  • Cardarelli, M.; Spanò, L.; Mariotti, D.; Mauro, L.; van Sluys, M.A.; Costantino, P. The role of auxin in hairy root induction. Mol Gen Genet 208:457–463; (1987b)

    CAS  Google Scholar 

  • Carneiro, M.; Vilaine, F. Differential expression of the rolA plant oncogene and its effect on tobacco development. Plant J 3:785–792; 1993

    Article  PubMed  CAS  Google Scholar 

  • Cecchetti, V.; Altamura, M.M.; Serino, G.; Pomponi, M.; Falasca, G.; Costantino, P.; Cardarelli, M. ROX1, a gene induced by rolB, is involved in procambial cell proliferation and xylem differentiation in tobacco stamen. Plant J 49:27–37; 2007

    PubMed  CAS  Google Scholar 

  • Charlwood, B.V.; Charlwood, K.A. Terpenoid production in plant cell culture. In: Harborne JB, Tomas-Barberan FE (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 95–132; 1991

    Google Scholar 

  • Chilton, M.D.; Tepfer, D.A.; Petit, A.; David, C.; Casse-Delbart, F.; Tempe, J. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434; 1982

    CAS  Google Scholar 

  • Cho, H.J.; Wildholm, J.M. Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tissue Organ Cult 69:259–269; 2002

    CAS  Google Scholar 

  • Cho, H.J.; Brotherton, J.E.; Song, H.S.; Widholm, J.M. Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 123:1069–1076; 2000

    PubMed  CAS  Google Scholar 

  • Christey, M.C. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700; 2001

    CAS  Google Scholar 

  • Christie, P.J.; Ward, J.E.; Winans, S.C.; Nester, E.W. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170:2659–2667; 1988

    PubMed  CAS  Google Scholar 

  • Citovsky, V.; Zupan, J.; Warnick, D.; Zambryski, P. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805; 1992

    PubMed  CAS  Google Scholar 

  • Collier, R.; Fuchs, B.; Walter, N.; Kevin, L.W.; Taylor, C.G. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457; 2005

    PubMed  CAS  Google Scholar 

  • Conn, H.J. Validity of the genus Alcaligenes. J Bacteriol 44:353–360; 1942

    PubMed  CAS  Google Scholar 

  • Costantino, P.; Hooykaas, P.J.; den Dulk-Ras, H.; Schilperoort, R.A. Tumor formation and rhizogenicity of Agrobacterium rhizogenes carrying Ti plasmids. Gene 11:79–87; 1980

    PubMed  CAS  Google Scholar 

  • Costantino, P.; Mauro, M.L.; Micheli, G.; Risuleo, G.; Hooykaas, P.J. Schilperoort, R. Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes. Plasmid 5:170–182; 1981

    PubMed  CAS  Google Scholar 

  • Costantino, P.; Spano, L.; Pomponi, M.; Benvenuto, E.; Ancora, G. The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2:465–470; 1984

    PubMed  CAS  Google Scholar 

  • Costantino, P.; Capone, I.; Cardarelli, M.; De-Paolis, A.; Mauro, M.L.; Trovato, M. Bacterial plant oncogenes: the rol genes’ saga. Genetica 94:203–211; 1994

    PubMed  CAS  Google Scholar 

  • Davey, M.R.; Mulligan, B.J.; Gartland, K.M.A.; Peel, E.; Sargent, A.W.; Morgan, A.J. Transformation of Solanum and Nicotiana species using an Ri plasmid vector. J Exp Bot 38:1507–1516; 1987

    CAS  Google Scholar 

  • Davioud, E.; Petit, A.; Tate, M.E.; Ryder, M.H.; Tempe, J. Cucumopine—a new T-DNA-encoded opine in hairy root and crown gall. Phytochemistry 27:2429–2433; 1988

    CAS  Google Scholar 

  • De Cleene, M.; De Ley, J. The host range of infectious hairy roots [Agrobacterium rhizogenes]. Bot Rev 47:147–194; 1981

    Article  Google Scholar 

  • Dehio, C.; Schell, J. Stable expression of a single-copy rolA gene in transgenic Arabidopsis thaliana plants allows an exhaustive mutagenic analysis of the transgene-associated phenotype. Mol Gen Genet 241:359–366; 1993

    PubMed  CAS  Google Scholar 

  • Dehio, C.; Grossmann, K.; Schell, J.; Schmulling, T. Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210; 1993

    PubMed  CAS  Google Scholar 

  • Delbarre, A.; Muller, P.; Imhoff, V.; Barbier-Brygoo, H.; Maurel, C.; Leblanc, N.; Perrot-Rechenmann, C.; Guern, J. The rolB Gene of Agrobacterium rhizogenes does not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105:563–569; 1994

    PubMed  CAS  Google Scholar 

  • Diaz, C.L.; Melchers, L.S.; Hooykaas, P.J.J.; Lugtenberg, B.J.J.; Kijne, J.W. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581; 1989

    CAS  Google Scholar 

  • Diouf, D.; Gherbi, H.; Prin, Y.; Franche, C.; Duhoux, E.; Bogusz, D. Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532–537; 1995

    PubMed  CAS  Google Scholar 

  • Drewes, F.E.; Staden, J.V. Initiation of and solasodine production in hairy root cultures of Solanum mauritianum Scop. Plant Growth Regul 17:27–31; 1995

    CAS  Google Scholar 

  • Duckely, M.; Hohn, B. The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6; 2003

    PubMed  CAS  Google Scholar 

  • Durand-Tardif, M.; Broglie, R.; Slightom, J.; Tepfer, D. Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. J Mol Biol 186:557−564; 1985

    PubMed  Google Scholar 

  • Eapen, S.; Suseelan, K.N.; Tivarekar, S.; Kotwal, S.A.; Mitra, R. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133; 2003

    PubMed  CAS  Google Scholar 

  • Estrada-Navarrete, G.; Alvarado-Affantranger, X.; Olivares, J.E.; Díaz-Camino, C.; Santana, O.; Murillo, E.; Guillén, G.; Sánchez-Guevara, N.; Acosta, J.; Quinto, C.; Li, D.; Gresshoff, P.M.; Sánchez, F. Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact 19:1385–1393; 2006

    PubMed  CAS  Google Scholar 

  • Estrada-Navarrete, G.; Alvarado-Affantranger, X.; Olivares, J.E.; Guillen, G.; Diaz-Camino, C.; Campos, F.; Quinto, C.; Gresshoff, P.M.; Sanchez, F. Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824; 2007

    PubMed  CAS  Google Scholar 

  • Estramareix, C.; Ratet, P.; Boulanger, F.; Richaud, F. Multiple mutations in the transferred regions of the Agrobacterium rhizogenes root-inducing plasmids. Plasmid 15:245; 1986

    PubMed  CAS  Google Scholar 

  • Estruch, J.J.; Chriqui, D.; Grossmann, K.; Schell, J.; Spena, A. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889–2895; 1991a

    PubMed  CAS  Google Scholar 

  • Estruch, J.J.; Parets-Soler, A.; Schmülling, T.; Spena, A. Cytosolic localization in transgenic plants of the rolC peptide from Agrobacterium rhizogenes. Plant Mol Biol 17:547–550; 1991b

    PubMed  CAS  Google Scholar 

  • Estruch, J.J.; Schell, J.; Spena, A. The protein encoded by rolB plant oncogene hydrolyses indole glucosides. EMBO J 10:3125–3128; 1991c

    PubMed  CAS  Google Scholar 

  • Fagard, M.; Boutet, S.; Morel, J.B.; Bellini, C.; Vaucheret, H. AGO-1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Nat Acad Sci U S A 97:11650–11654; 2000

    PubMed  CAS  Google Scholar 

  • Faiss, M.; Strnad, M.; Redig, P.; Dolzak, K.; Hanus, J.; Van Onckelen, H.; Schmuelling, T. Chemically induced expression of the rolC-encoded β-glucuronidase in transgenic tobacco plants and analysis of cytokinin metabolism: RolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46; 1996

    CAS  Google Scholar 

  • Farrand, S.K.; van Berkum, P.B.; Oger, P. Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687; 2003

    PubMed  CAS  Google Scholar 

  • Filetici, P.; Spanò, L.; Costantino, P. Conserved regions in the T-DNA of different Agrobacterium rhizogenes root inducing plasmid. Plant Mol Biol 9:19–26; 1987

    CAS  Google Scholar 

  • Filippini, F.; Rossi, V.; Marin, O.; Trovato, M.; Costantino, P.; Downey, P.M.; Lo Schiavo, F.; Terzi, M. A plant oncogene as a phosphatase. Nature 379:499–500; 1996

    PubMed  CAS  Google Scholar 

  • Fitzmaurice, W.P.; Nguyen, L.V.; Wernsman, E.A.; Thompson, W.F.; Conkling, M.A. Transposon tagging of the sulfur gene of tobacco using engineered maize Ac/Ds elements. Genetics 153:1919–1928; 1999

    PubMed  CAS  Google Scholar 

  • Flores, H.E.; Vivanco, J.M.; Loyola-Vargas, V.M. Radicle biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226; 1999

    PubMed  Google Scholar 

  • Forde, B.G. Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224; 2002

    PubMed  CAS  Google Scholar 

  • Fromm, M.E.; Taylor, L.P.; Walbot, V. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82:5824–5828; 1985

    PubMed  CAS  Google Scholar 

  • Fromm, M.E.; Taylor, L.P.; Walbot, V. Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793; 1986

    PubMed  CAS  Google Scholar 

  • Gaudin, V.; Vrain, T.; Jouanin, L. Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11–29; 1994

    CAS  Google Scholar 

  • Gelvin, S.B. Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 180:4300–4302; 1998

    PubMed  CAS  Google Scholar 

  • Gelvin, S.B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37; 2003

    PubMed  CAS  Google Scholar 

  • Georgiev, M.I.; Pavlov, A.I.; Bley, T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185; 2007

    PubMed  CAS  Google Scholar 

  • Giri, A.; Narasu, M.L. Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1–22; 2000

    PubMed  CAS  Google Scholar 

  • Giri, A.; Giri, C.C.; Dhingra, V.; Narasu, M.L. Enhanced podophyllotoxin production from Agrobacterium rhizogenes transformed cultures of Podophyllum hexandrum. Nat Prod Lett 15:229–235; 2001

    PubMed  CAS  Google Scholar 

  • Goodner, B.; Hinkle, G.; Gattung, S.; Miller, N.; Blanchard, M.; Qurollo, B.; Goldman, B.S.; Cao, Y.; Askenazi, M.; Halling, C.; Mullin, L.; Houmiel, K.; Gordon, J.; Vaudin, M.; Iartchouk, O.; Epp, A.; Liu, F.; Wollam, C.; Allinger, M.; Doughty, D.; Scott, C.; Lappas, C.; Markelz, B.; Flanagan, C.; Crowell, C.; Gurson, J.; Lomo, C.; Sear, C.; Strub, G.; Cielo, C.; Slater, S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328; 2001

    PubMed  CAS  Google Scholar 

  • Gorpenchenko, T.Y.; Kiselev, K.V.; Bulgakov, V.P.; Tchernoded, G.K.; Bragina, E.A.; Khodakovskaya, M.V.; Koren, O.G.; Batygina, T.B.; Zhuravlev, Y.N. The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 22:3457–467; 2006

    PubMed  CAS  Google Scholar 

  • Guillon, S.; Tremouillaux-Guiller, J.; Pati, P.K.; Rideau, M.; Gantet, P. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409; 2006a

    PubMed  CAS  Google Scholar 

  • Guillon, S.; Tremouillaux-Guiller, J.; Pati, P.K.; Rideau, M.; Gantet, P. Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346; 2006b

    PubMed  CAS  Google Scholar 

  • Gujarathi, N.P.; Haney, B.J.; Park, H.J.; Wickramasinghe, S.R.; Linden, J.C. Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog 21:775–780; 2005

    PubMed  CAS  Google Scholar 

  • Guyon, P.; Chilton, M-D.; Petit, A.; Tempe, J. Agropine in “null-type” crown gall tumors: evidence for generality of the opine concept. Proc Natl Acad Sci U S A 77:2693–2697; 1980

    PubMed  CAS  Google Scholar 

  • Guyon, P.; Petit, A.; Tempe, J.; Dessaux, Y. Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant Microb Interact 6:92–98; 1993

    CAS  Google Scholar 

  • Hamamoto, H.; Boulter, M.E.; Shirsat, A.H.; Croy, E.J.; Ellis, J.R. Recovery of morphogenetically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep 9:88–92; 1990

    Google Scholar 

  • Hamill, J.D.; Lidgett, A.J. Hairy root cultures—opportunities and key protocols for studies in metabolic engineering. In: Doran P (ed) Hairy roots: Culture and Applications. Harwood Academic Publishers, Amsterdam, 1997: pp1–30

    Google Scholar 

  • Han, K.H.; Keathley, D.E.; Davis, J.M.; Gordon, M.P. Regeneration of a transgenic woody legume (Robinia pseudoacacia L. black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci 88: 149–157; 1993

    Google Scholar 

  • Hansen, J.; Jùrgensen, J-E.; Stougaard, J.; Marcker, K.A. Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep 8:12–15; 1989

    Google Scholar 

  • Hansen, G.; Larribe, M.; Vaubert, D.; Tempe, J.; Biermann, B.J.; Montoya, A.L.; Chilton, M.D.; Brevet, J. Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci U S A 88:7763–7767; 1991

    PubMed  CAS  Google Scholar 

  • Hansen, G.; Tempe, J.; Brevet, J. AT-DNA transfer stimulator sequence in the vicinity of the right border of pRi8196. Plant Mol Biol 20:113–122; 1992

    PubMed  CAS  Google Scholar 

  • Hansen, G.; Vaubert, D.; Heron, J.N.; Clerot, D.; Tempe, J.; Brevet, J. Phenotypic effects of overexpression of Agrobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factors. Plant J 4:581–585; 1993

    CAS  Google Scholar 

  • Hansen, G.; Vaubert, D.; Clerot, D.; Tempe, J.; Brevet, J. A new open reading frame, encoding a putative regulatory protein, in Agrobacterium rhizogenes T-DNA. C R Acad Sci III 317:49–53; 1994

    PubMed  CAS  Google Scholar 

  • Hansen, G.; Vaubert, D.; Clerot, D.; Brevet, J. Wound-inducible and organ-specific expression of ORF13 from Agrobacterium rhizogenes 8196 T-DNA in transgenic tobacco plants. Mol Gen Genet 254:337–343; 1997

    PubMed  CAS  Google Scholar 

  • Haseloff, J.; Siemering, K.R.; Prasher, D.C.; Hodge, S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127; 1997

    PubMed  CAS  Google Scholar 

  • Hildebrand, E. Life history of the hairy-root organism in relation to its pathogenesis on nursery apple trees. J Agric Res 48:857–885; 1934

    Google Scholar 

  • Hobohm, U.; Sander, C. A sequence property approach to searching protein databases. J Mol Biol 251:390–399; 1995

    PubMed  Google Scholar 

  • Hodges, L.D.; Cuperus, J.; Ream, W. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186:3065–3307; 2004

    PubMed  CAS  Google Scholar 

  • Hodges, L.D.; Vergunst, A.C.; Neal-McKinney, J.; den Dulk-Ras, A.; Moyer, D.M.; Hooykaas, P.J.; Ream, W. Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV secretion. J Bacteriol 188:8222–8230; 2006

    PubMed  CAS  Google Scholar 

  • Holmes, B.; Roberts, P. The classification, identification and nomenclature of Agrobacteria. J Appl Bacteriol 50:443–467; 1981

    Google Scholar 

  • Hong, S-B.; Hwang, I.; Dessaux, Y.; Guyon, P.; Kim, K-S.; Farrand, S.K. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains. J Bacteriol 179:4831–4840; 1997

    PubMed  CAS  Google Scholar 

  • Hu, Z.B.; Du, M. Hairy root and its application in plant genetic engineering. J Int Plant Biol 48:121–127; 2006

    CAS  Google Scholar 

  • Hwang, C.F.; Bhakta, A.V.; Truesdell, G.M.; Pudlo, W.M.; Williamson, V.M. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell 12:1319–1329; 2000

    PubMed  CAS  Google Scholar 

  • Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol 139:1401–1410; 2005

    PubMed  CAS  Google Scholar 

  • Isogai, A.; Fukuchi, N.; Hayashi, M.; Kamada, H.; Harada, H.; Suzuki, A. Structure of a new opine, mikimopine, in hairy root induced by Agrobacterium rhizogenes. Agric Biol Chem 52:3235–3237; 1998

    Google Scholar 

  • Isogai, A.; Fukuchi, N.; Hayashi, M.; Kamada, H.; Harada, H.; Suzuki, A. Mikimopine, an opine in hairy roots of tobacco induced by Agrobacterium rhizogenes. Phytochemistry 29:3131–3134; 1990

    CAS  Google Scholar 

  • Jacob, M.; Rubery, P.H. Naturally occurring auxin transport regulators. Science 241:346–349; 1998

    Google Scholar 

  • Jasik, J.; Boggetti, B.; Caricato, G.; Mantell, S. Characterisation of morphology and root formation in the model woody perennial shrub Solanum aviculare Forst expressing rolABC genes of Agrobacterium rhizogenes. Plant Sci 124:57–68; 1997

    CAS  Google Scholar 

  • Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUS fusions: β-Glucuronidase as sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907; 1987

    PubMed  CAS  Google Scholar 

  • Keappler, H.F.; Rines, H.W.; Rines, H.W. Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84:560–566; 1992

    Google Scholar 

  • Kereszt, A.; Li, D.; Indrasumunar, A.; Nguyen, C.D.; Nontachaiyapoom, S.; Kinkema, M.; Gresshoff, P.M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952; 2007

    PubMed  CAS  Google Scholar 

  • Kerr, A.; Brisbane, P.G. Agrobacterium. In: Fahy PC, Persley GJ (eds) Plant bacterial diseases. Academic Press, Sydney, Australia, pp 27–43; 1983

    Google Scholar 

  • Kersters, K.; De Ley, J. Agrobacterium Conn 1942. In: Krieg NR, Holt JG (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams & Wilkins Baltimore, 1984: pp 244–254

    Google Scholar 

  • Kifle, S.; Shao, M.; Jung, C.; Cai, D. An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18:514–519; 1999

    CAS  Google Scholar 

  • Kim, Y.J.; Weathers, P.J.; Wyslouzil, B.E. The growth of Artemisia annua hairy roots in liquid and gas phase reactors. Biotechnol Bioeng 80:454–464; 2002a

    PubMed  CAS  Google Scholar 

  • Kim, Y.J.; Wyslouzil, B.E.; Weathers, P.J. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10; 2002b

    CAS  Google Scholar 

  • Kiselev, K.V.; Kusaykin, M.I.; Dubrovina, A.S.; Bezverbny, D.A.; Zvyagintseva, T.N.; Bulgakov, V.P. The rolC gene induces expression of a pathogenesis-related beta-1,3-glucanase in transformed ginseng cells. Phytochemistry 67:2225–2231; 2006

    PubMed  CAS  Google Scholar 

  • Kiselev, K.V.; Dubrovina, A.S.; Veselova, M.V.; Bulgakov, V.P.; Fedoreyev, S.A.; Zhuravlev, Y.N. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692; 2007

    PubMed  CAS  Google Scholar 

  • Klein, T.M.; Harper, E.C.; Svab, Z.; Sanford, J.C.; Fromm, M.E.; Maliga, P. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci U S A 85: 8502–8505; 1988

    PubMed  CAS  Google Scholar 

  • Klein, T.M.; Kornstein, L.; Sanford, J.C.; Fromm, M.E. Genetic transformation of maize cells by particle bombardment. Plant Physiol 91:440–444; 1989

    PubMed  CAS  Google Scholar 

  • Kouchi, H.; Takane, K.; So, R.B.; Ladha, J.K.; Reddy, P.M. Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129; 1999

    PubMed  CAS  Google Scholar 

  • Krolicka, A.; Staniszewska, I.I.; Bielawski, K.; Malinski, E.; Szafranek, J.; Lojkowska, E. Establishment of hairy root cultures of Ammi majus. Plant Sci 160:259–264; 2001

    PubMed  CAS  Google Scholar 

  • Kumagai, H.; Kouchi, H. Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microb Interact 16:663–668; 2003

    CAS  Google Scholar 

  • Lam, S.; Lam, B.; Harrison, L.; Strobel, G. Genetic information of the Ri plasmid of Agrobacterium rhizogenes determines host specificity. Plant Sci Lett 34:345–352; 1984

    CAS  Google Scholar 

  • Lawrence, R.J.; Pikaard, C.S. Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121; 2003

    PubMed  CAS  Google Scholar 

  • Leach, F.; Aoyagi, K. Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79:69–76; 1991

    CAS  Google Scholar 

  • Lemcke, K.; Schmulling, T. Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433; 1998

    PubMed  CAS  Google Scholar 

  • Lemcke, K.; Prinsen, E.; van Onckelen, H.; Schmulling, T. The ORF8 gene product of Agrobacterium rhizogenes TL-DNA has tryptophan 2-monooxygenase activity. Mol Plant Microb Interact 13:787–790; 2000

    CAS  Google Scholar 

  • Levesque, H.; Delepelaire, P.; Rouze, P.; Slightom, J.; Tepfer, D. Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744; 1988

    CAS  Google Scholar 

  • Limami, M.A.; Sun, L.Y.; Douat, C.; Helgeson, J.; Tepfer, D. Natural genetic transformation by Agrobacterium rhizogenes. Annual flowering in two biennials, Belgian endive and carrot. Plant Physiol 118:543–550; 1998

    PubMed  CAS  Google Scholar 

  • Limpens, E.; Ramos, J.; Franken, C.; Raz, V.; Compaan, B.; Franssen, H.; Bisseling, T.; Geurts, R. RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992; 2004

    PubMed  CAS  Google Scholar 

  • Marjamaa, K.; Hilden, K.; Kukkola, E.; Lehtonen, M.; Holkeri, H.; Haapaniemi, P.; Koutaniemi, S.; Teeri, T.H.; Fagerstedt, K.; Lundell, T. Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732; 2006

    PubMed  CAS  Google Scholar 

  • Martin-Tanguy, J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148; 2001

    CAS  Google Scholar 

  • Martin-Tanguy, J.; Sun, Y.; Burtin, D.; Vernoy, R.; Rossin, N.; Tepfer, D. Attenuation of the Phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene (correlations with changes in polyamine metabolism and DNA methylation). Plant Physiol 111:259–267; 1996

    PubMed  CAS  Google Scholar 

  • Maurel, C.; Barbier-Brygoo, H.; Spena, A.; Tempe, J.; Guern, J. Single rol genes from the Agrobacterium rhizogenes T(L)-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97:212–216; 1991

    PubMed  CAS  Google Scholar 

  • Maurel, C.; Leblanc, N.; Barbier-Brygoo, H.; Perrot-Rechenmann, C.; Bouvier-Durand, M.; Guern, J. Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol 105:1209–1215; 1994

    PubMed  CAS  Google Scholar 

  • Mauro, M.L.; Trovato, M.; Paolis, A.D.; Gallelli, A.; Costantino, P.; Altamura, M.M. The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700; 1996

    PubMed  CAS  Google Scholar 

  • Mette, M.F.; Aufsatz, W.; van der Winden, J.; Matzke, MA.; Matzke, A.J.M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5294–5201; 2000

    Google Scholar 

  • Meyer, A.; Tempe, J.; Costantino, P. Hairy root: a molecular overview functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen N (eds) Plant-microbe interactions, vol. 5. APS Press, St. Paul, Minnesota, 2000: pp 93–139

    Google Scholar 

  • Mlotshwa, S.; Voinnet, O.; Mette, M.F.; Matzke, M.; Vaucheret, H.; Ding, S.W.; Pruss, G.; Vance, V.B. RNA silencing and the mobile silencing signal. Plant Cell 14 Suppl:S289–S301; 2002

    PubMed  CAS  Google Scholar 

  • Moore, L.; Warren, G.; Strobel, G. Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626; 1979

    PubMed  CAS  Google Scholar 

  • Moravec, T.; Schmidt, M.A.; Herman, E.M.; Woodford-Thomas, T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 25:1647–1657; 2006

    PubMed  Google Scholar 

  • Moreno-Valenzuela, O.A.; Minero-Garcia, Y.; Brito-Argaez, L.; Carbajal-Mora, E.; Echeverria, O.; Vazquez-Nin, G.; Loyola-Vargas, V.M. Immunocytolocalization of tryptophan decarboxylase in Catharanthus roseus hairy roots. Mol Biotechnol 23:11–18; 2003

    PubMed  CAS  Google Scholar 

  • Morgan, A.J.; Cox, P.N.; Turner, D.A.; Peel, E.; Davey, M.R.; Gartland, K.M.A.; Mulligan, B.J. Transformation of tomato using an Ri plasmid vector. Plant Sci 49:37–49; 1987

    CAS  Google Scholar 

  • Moriguchi, K.; Maeda, Y.; Satou, M.; Hardayani, N.S.; Kataoka, M.; Tanaka, N.; Yoshida, K. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J Mol Biol 307:771–784; 2001

    PubMed  CAS  Google Scholar 

  • Moriuchi, H.; Okamoto, C.; Nishihama, R.; Yamashita, I.; Machida, Y.; Tanaka, N. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38:260–275; 2004

    PubMed  CAS  Google Scholar 

  • Mugnier, J. Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12; 1988

    Google Scholar 

  • Mugnier, J. Mycorrhizal interactions and the effects of fungicides, nematicides and herbicides on hairy root cultures. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, 1997: pp 123–132

    Google Scholar 

  • Narayanan, R.A.; Atz, R.; Denny, R.; Young, N.D.; Somers, D.A. Expression of soybean cyst nematode resistance in transgenic hairy roots of soybean. Crop Sci 39:1680–1686; 1999

    Article  Google Scholar 

  • Newbury, H.J.; Senior, I. Transgenic Antirrhinum. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III, SpringerBerlin, 2001: pp 16–26

    Google Scholar 

  • Nilsson, O.; Olsson, O. Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473; 1997

    CAS  Google Scholar 

  • Nilsson, O.; Crozier, A.; Schmülling, T.; Sandberg, G.; Olsson, O. Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 3:681–689: 1993a

    CAS  Google Scholar 

  • Nilsson, O.; Moritz, T.; Imbault, N.; Sandberg, G.; Olsson, O. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiol 102:363–371; 1993b

    PubMed  CAS  Google Scholar 

  • Nilsson, O.; Little, CH.; Sandberg, G.; Olsson, O. Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895; 1996a

    PubMed  CAS  Google Scholar 

  • Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112:493–502; 1996b

    PubMed  CAS  Google Scholar 

  • Nontachaiyapoom, S.; Scott, P.T.; Men, A.E.; Kinkema, M.; Schenk, P.M.; Gresshoff, P.M. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Mol Plant Microb Interact 20:769–780; 2007

    CAS  Google Scholar 

  • Otten, L.; Helfer, A. Biological activity of the rolB-like 5′ end of the A4-orf8 gene from the Agrobacterium rhizogenes TL-DNA. Mol Plant Microb Interact 14:405–411; 2001

    CAS  Google Scholar 

  • Ouartsi, A.; Clérot, D.; Meyer, A.; Dessaux, Y.; Brevet, J.; Bonfill, M. The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Sci 166:557–567; 2004

    CAS  Google Scholar 

  • Pandolfini, T.; Molesini, B.; Avesani, L.; Spena, A.; Polverari, A. Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnol 25:3–7; 2003

    Google Scholar 

  • Peele, C.; Jordan, C.V.; Muangsan, N.; Turnage, M.; Egelkrout, E.; Eagle, P.; Hanley-Bowdoin, L.; Robertson, D. Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366; 2001

    PubMed  CAS  Google Scholar 

  • Peralta, E.G.; Ream, L.W. T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci U S A 2:5112–5116; 1985

    Google Scholar 

  • Peralta, E.G.; Hellmiss, R.; Ream, W. Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO J 5:1137–1142; 1986

    PubMed  CAS  Google Scholar 

  • Petit, A.; David, C.; Dahl, G.; Ellis, J.; Guyon, P.; Casse-Delbart, F.; Tempé, J. Further extension of the opine concept: plasmids in Agrobacterium rhizogenes co-operate for opine degradation. Mol Gen Genet 190:204–214; 1983

    CAS  Google Scholar 

  • Petruccelli, S.; Otegui, M.S.; Lareu, F.; Tran Dinh, O.; Fitchette, A.C.; Circosta, A.; Rumbo, M.; Bardor, M.; Carcamo, R.; Gomord, V. Beachy RN A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4:511–527; 2006

    PubMed  CAS  Google Scholar 

  • Phelep, M.; Petit, A.; Martin, L.; Duhoux, E.; Tempe, J. Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology 9:461–466; 1991

    CAS  Google Scholar 

  • Porter, J.R. Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421; 1991

    Google Scholar 

  • Prinsen, E.; Chriqui, D.; Vilaine, F.; Tepfer, M.; Van Onckelen, H. Endogenous phytohormones in tobacco plants transformed with Agrobacterium rhizogenes pRi TL-DNA genes. Plant Physiol 144:80–85; 1994

    CAS  Google Scholar 

  • Quandt, H-J.; PuÈhler, A.; Broer, I. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microb Interact 6:699–706; 1993

    Google Scholar 

  • Rao, S.R.; Ravishankar, G. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153; 2002

    PubMed  CAS  Google Scholar 

  • Remeeus, P.M.; van Bezooijen, J.; Wijbrandi, J.; van Bezooijen, J. In vitro testing is a reliable way to screen the temperature sensitivity of resistant tomatoes against Meloidogyne incognita. In: Proceedings of 5th international symposium on crop protection, Universiteit Gent, Belgium, vol. 63, no. 2b, 1998: pp 635–640

  • Riker, A.J.; Banfield, W.M.; Wright, W.H.; Keitt, G.W.; Sagen, H.E. Studies on infectious hairy root of nursery-apple tree. J Agric Res 41:507–540; 1930

    Google Scholar 

  • Robaglia, C.; Vilaine, F.; Pautot, V.; Raimond, F.; Amselem, J.; Jouanin, L.; Casse-Delbart, F.; Tepfer, M. Expression vectors based on the Agrobacterium rhizogenes Ri plasmid transformation system. Biochimie 69:231–237; 1987

    PubMed  CAS  Google Scholar 

  • Rossi, L.; Hohn, B.; Tinland, B. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 93:126–130; 1996

    PubMed  CAS  Google Scholar 

  • Ryder, M.H.; Tate, M.E.; Kerr, A. Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221; 1985

    PubMed  CAS  Google Scholar 

  • Savka, M.A.; Ravillion, B.; Noel, G.R.; Farrand, S.K. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503–508; 1990

    Google Scholar 

  • Schmülling, T.; Fladung, M.; Grossmann, K.; Schell, J. Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 3:371–382; 1993

    Google Scholar 

  • Schmulling, T.; Schell, J.; Spena, A. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629; 1988

    PubMed  CAS  Google Scholar 

  • Schmulling, T.; Schell, J.; Spena, A. Promoters of the rolA, B, and C genes of Agrobacterium rhizogenesare differentially regulated in transgenic plants. Plant Cell 1:665–670; 1989

    PubMed  CAS  Google Scholar 

  • Seki, H.; Nishizawa, T.; Tanaka, N.; Niwa, Y.; Yoshida, S.; Muranaka, T. Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59:793–807; 2005

    PubMed  CAS  Google Scholar 

  • Sevon, N; Oksman-Caldentey, K.M. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868; 2002

    PubMed  CAS  Google Scholar 

  • Shen, W.H.; Petit, A.; Guern, J.; Tempe, J. Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci U S A 85:3417–3421; 1988

    PubMed  CAS  Google Scholar 

  • Shen, W.H.; Davioud, E.; David, C.; Barbier-Brygoo, H.; Tempe, J.; Guern, J. High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94:554–560; 1990

    Article  PubMed  CAS  Google Scholar 

  • Shurvinton, C.E.; Ream, W. Stimulation of Agrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bacteriol 173:5558–5563; 1991

    PubMed  CAS  Google Scholar 

  • Skerman, V.B.D.; McGowan, V.; Sneath, P.H.A. Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420; 1980

    Article  Google Scholar 

  • Slightom, J.L.; Durand-Tardif, M.; Jouanin, L.; Tepfer, D. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. Identification of open reading frames. J Biol Chem 261:108–121; 1986

    PubMed  CAS  Google Scholar 

  • Smith, E.F.; Townsend, C.O. A plant-tumor of bacterial origin. Science 25:671–673; 1907

    PubMed  CAS  Google Scholar 

  • Spanò, L.; Costantino, P. Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z Pflanzenphysiol 106:87–92; 1982

    Google Scholar 

  • Spanò, L.; Pomponi, M.; Costantino, P.; Van Slogteren, G.M.S.; Tempé, J. Identification of T-DNA in the root-inducing plasmid of the agropine-type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300; 1982

    Google Scholar 

  • Spanò, L.; Mariotti, D.; Cardarelli, M.; Branca, C.; Costantino, P. Morphogenesis and auxin sensitivity of transgenic tobacco with different complements of Ri T-DNA. Plant Physiol 87:479–483; 1988

    PubMed  Google Scholar 

  • Spena, A.; Schmülling, T.; Koncz, C.; Schell, J. Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J. 6:3891–3899; 1987

    PubMed  CAS  Google Scholar 

  • Srivastava, S.; Srivastava, A.K. Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43; 2007

    PubMed  CAS  Google Scholar 

  • Stieger, P.A.; Meyer, A.D.; Kathmann, P.; Frundt, C.; Niederhauser, I.; Barone, M.; Kuhlemeier, C. The orf13 T-DNA gene of Agrobacterium rhizogenes confers meristematic competence to differentiated cells. Plant Physiol 135:1798–1808; 2004

    PubMed  CAS  Google Scholar 

  • Stougaard, J. Agrobacterium rhizogenes as a vector for transforming higher plants. Application in Lotus corniculatus transformation. Methods Mol Biol 49:49–61; 1995

    PubMed  CAS  Google Scholar 

  • Subramanian, S.; Stacey, G.; Yu, O. Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285; 2007

    PubMed  CAS  Google Scholar 

  • Sun, L-Y.; Monneuse, M-O.; Martin-Tanguy, J.; Tepfer, D. Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 80:145–146; 1991

    CAS  Google Scholar 

  • Suresh, B.; Ravishankar, G.A. Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124; 2004

    PubMed  CAS  Google Scholar 

  • Suresh, B.; Sherkhane, P.D.; Kale, S.; Eapen, S.; Ravishankar, G.A. Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere 61:1288–1292; 2005

    PubMed  CAS  Google Scholar 

  • Suttipanta, N.; Pattanaik, S.; Gunjan, S.; Xie, CH.; Littleton, J.; Yuan, L. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148; 2007

    PubMed  CAS  Google Scholar 

  • Suzuki, M. SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol 207:61–84; 1989

    PubMed  CAS  Google Scholar 

  • Suzuki, H.; Fowler, T.J.; Tierney, M.L. Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109–119; 1993

    PubMed  CAS  Google Scholar 

  • Suzuki, K.; Tanaka, N.; Kamada, H.; Yamashita, I. Mikimopine synthase (mis) gene on pRi1724. Gene 263:49–58; 2001

    PubMed  CAS  Google Scholar 

  • Talano, M.A.; Agostini, E.; Medina, M.I.; Milrad de Forchetti, S.; Tigier, H.A. Tomato (Lycopersicon esculentum cv. Pera) hairy root cultures: characterization and changes in peroxidase activity under NaCl treatment. In vitro Cell Dev Biol Plant 39:354–359; 2003

    CAS  Google Scholar 

  • Talano, M.A.; Agostini, E.; Medina, M.I.; Reinoso, H.; Tordable Mdel, C.; Tigier, H.A.; de Forchetti, S.M. Changes in ligno-suberization of cell walls of tomato hairy roots produced by salt treatment: the relationship with the release of a basic peroxidase. J Plant Physiol 163:740–749; 2006

    PubMed  CAS  Google Scholar 

  • Tanaka, N.; Fujikawa, Y.; Aly, M.A.M.; Saneoka, H.; Fujita, K.; Yamashita, I. Proliferation and rol gene expression in hairy root lines of Egyptian clover (Trifolium alexandrinum L.). Plant Cell Tissue Organ Cult 66:175–182; 2001

    CAS  Google Scholar 

  • Tayler, B.H.; Amasino, R.M.; White, F.F.; Nester, E.W. T-DNA analysis of plants regenerated from hairy root tumors. Mol Gen Genet 201:554–557; 1985

    Google Scholar 

  • Taylor, C.G.; Fuchs, B.; Collier, R.; Lutke, W.K. Generation of composite plants using Agrobacterium rhizogenes. In: Wang K (ed) Agrobacterium protocols. Methods in molecular biology 343. Humana Totowa, NJ 155–167; 2006

    Google Scholar 

  • Tepfer, D. The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first. In: Lurquin P, Kleinhofs A (eds) Genetic engineering in eukaryotes. Plenum, New York, 1983: pp 153–164

    Google Scholar 

  • Tepfer, D. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967; 1984

    PubMed  CAS  Google Scholar 

  • Tepfer, D. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution. In: Kosuge T, Nester E (eds) Plant–microbe interactions. McGraw-Hill, New York, 1989: pp 294–342

    Google Scholar 

  • Tepfer, D. Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146; 1990

    CAS  Google Scholar 

  • Tepfer, D.; Tempé, J. Production d’agropine par des racines formées sous 1’action d’Agrobacterium rhizogenes, souche A4. C R Acad Sci 292:153–156; 1981

    CAS  Google Scholar 

  • Tepfer, M.; Casse-Delbart, F. Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol Sci 4:24–28; 1987

    PubMed  CAS  Google Scholar 

  • Tepfer, D.; Metzger, L.; Prost, R. Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges. Plant Mol Biol 13:295–302; 1989

    PubMed  CAS  Google Scholar 

  • Torney, F.; Trewyn, B.G.; Lin, V.S-Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology 2:295–300; 2007

    CAS  PubMed  Google Scholar 

  • Toro, N.; Datta, A.; Yanofsky, M.; Nester, E. Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci U S A 85:8558–8562; 1988

    PubMed  CAS  Google Scholar 

  • Torregrosa, L.; Bouquet, A. Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tissue Organ Cult 49:53–62; 1997

    CAS  Google Scholar 

  • Trovato, M.; Maras, B.; Linhares, F.; Constantino, P. The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 98:13449–13453; 2001

    PubMed  CAS  Google Scholar 

  • van Altvorst, A.C.; Bino, R.J.; van Dijk, A.J.; Lamers, A.M.J.; Lindhout, W.H.; van der Mark, F.; Dons, J.J.M. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85; 1992

    Google Scholar 

  • Van de Velde, W.; Mergeay, J.; Holsters, M. Goormachtig S Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281–1288; 2003

    Google Scholar 

  • van Haaren M.J.J.; Sedee, N.J.A.; Schilperoort, R.A.; Hooykaas, P.J.J. Overdrive is a T-region enhancer which stimulates T-strand production in Agrobacterium tumefaciens. Nucleic Acids Res 15:8983–8997; 1987

    PubMed  Google Scholar 

  • Vansuyt, G.; Vilaine, F.; Tepfer, M.; Rossingnol, M. rolA modulates the sensitivity to auxin of the proton translocation catalyzed by the plasma membrane H’-ATPase in transformed tobacco. FEBS Lett 298:111–115; 1992

    Google Scholar 

  • Vilaine, F.; Casse-Delbart, F. A new vector derived from Agrobacterium rhizogenes plasmids: a micro-Ri plasmid and its use to construct a mini-Ri plasmid. Gene 55:105–114; 1987

    PubMed  CAS  Google Scholar 

  • Vilaine, F.; Charbonnier, C.; Casse-Delbart, F. Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol Gen Genet 210:111–115; 1987

    CAS  Google Scholar 

  • Ward, D.V.; Zambryski, P. The six functions of Agrobacterium VirE2. Proc Natl Acad Sci U S A 98:385–386; 2001

    PubMed  CAS  Google Scholar 

  • Waterhouse, P.M.; Helliwell, C.A. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38; 2003

    PubMed  CAS  Google Scholar 

  • Weising, K.; Kahl, G. Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 2:327–351; 1996

    Google Scholar 

  • Weller, S.A.; Stead, DE.; O’Neill, T.M.; Hargreaves, D.; McPherson, G.M. Rhizogenic Agrobacterium biovar 1 strains and cucumber root mat in the UK. Plant Pathol 49:43–50; 2000

    Google Scholar 

  • Weller, S.A.; Stead, D.E.; Young, J.P. Acquisition of an Agrobacterium Ri plasmid and pathogenicity by other alpha-Proteobacteria in cucumber and tomato crops affected by root mat. Appl Environ Microbiol 70:2779–2785; 2004

    PubMed  CAS  Google Scholar 

  • Weller, S.A.; Stead, D.E.; Young, J.P. Recurrent outbreaks of root mat in cucumber and tomato are associated with a monomorphic, cucumopine, Ri-plasmid harboured by various Alphaproteobacteria. EMS Microbiol Lett 258:136–43; 2006

    CAS  Google Scholar 

  • Wesley, S.V.; Helliwell, C.A.; Smith, N.A.; Wang, M.B.; Rouse, D.T.; Liu, Q.; Gooding, P.S.; Singh, S.P.; Abbott, D.; Stoutjesdijk, P.A.; Robinson, S.P.; Gleave, A.P.; Green, A.G.; Waterhouse, P.M. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590; 2001

    PubMed  CAS  Google Scholar 

  • White, L.O. The taxonomy of the crown gall organism Agrobacterium tumefaciens and its relationship to Rhizobia and to other Agrobacterium. J Gen Microbiol 77:565–574; 1972

    Google Scholar 

  • White, F.F.; Nester, E.W. Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bacteriol 144:710–720; 1980a

    PubMed  CAS  Google Scholar 

  • White, F.F.; Nester, E.W. Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134–1141; 1980b

    PubMed  CAS  Google Scholar 

  • White, F.F.; Taylor, B.H.; Huffman, G.A.; Gordon, M.P.; Nester, E.W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44; 1985

    PubMed  CAS  Google Scholar 

  • Willmitzer, L.; Sanchez-Serrano, J.; Buschfeld, E.; Schell, J. DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissue. Mol Gen Genet 186:16–22; 1982

    CAS  Google Scholar 

  • Woese, C.R.; Gupta, R.; Hahn, C.M.; Zillig, W.; Tu, J. The phylogenetic relationships of three sulfur-dependent archaebacteria. Syst Appl Microbiol 5:97–105; 1984

    PubMed  CAS  Google Scholar 

  • Wood, D.W.; Setubal, J.C.; Kaul, R.; Monks, D.E.; Kitajima, J.P.; Okura, V.K.; Zhou, Y.; Chen, L.; Wood, G.E.; Almeida, N.F. Jr.; Woo, L.; Chen, Y.; Paulsen, I.T.; Eisen, J.A.; Karp, P.D.; Bovee, D. Sr.; Chapman, P.; Clendenning, J.; Deatherage, G.; Gillet, W.; Grant, C.; Kutyavin, T.; Levy, R.; Li, M.J.; McClelland, E.; Palmieri, A.; Raymond, C.; Rouse, G.; Saenphimmachak, C.; Wu, Z.; Romero, P.; Gordon, D.; Zhang, S.; Yoo, H.; Tao, Y.; Biddle, P.; Jung, M.; Krespan, W.; Perry, M.; Gordon-Kamm, B.; Liao, L.; Kim, S.; Hendrick, C.; Zhao, Z.Y.; Dolan, M.; Chumley, F.; Tingey, S.V.; Tomb, J.F.; Gordon, M.P.; Olson, M.V.; Nester, E.W. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323; 2001

    PubMed  CAS  Google Scholar 

  • Yadav, N.S.; Van der Leyden, J.; Bennett, D.R.; Barnes, W.M.; Chilton, M-D. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci U S A 79:6322–6326; 1982

    PubMed  CAS  Google Scholar 

  • Yibrah, H.S.; Gronroos, R.; Lindroth, A.; Franzen, H.; Clapham, D.; Arnold, S.V. Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgen Res 5:75–85; 1996

    CAS  Google Scholar 

  • Yokoyama, R.; Hirose, T.; Fujii, N.; Aspuria, E.T.; Kato, A.; Uchimiya, H. The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants. Mol Gen Genet 244:15–22; 1994

    PubMed  CAS  Google Scholar 

  • Young, J.M.; Kuykendall, L.D.; Martinez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Sys Evol Microbiol 5:189–103; 2001

    CAS  Google Scholar 

  • Young, J.M.; Kuykendall, L.D.; Martínez-Romero, E.; Kerr, A.; Sawada, H. Classification and nomenclature of Agrobacterium and Rhizobium—a reply to Farrand et al. (2003) Int J Syst Evol Microbiol 53:1689–1695; 2003

    PubMed  CAS  Google Scholar 

  • Yusibov, V.M.; Steck, T.R.; Gupta, V.; Gelvin, S.B. Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci U S A 91:2994–2998; 1994

    PubMed  CAS  Google Scholar 

  • Zhu, L.H.; Welander, M. Growth characteristics of the untransformed and transformed apple rootstock M26 with rolA and rolB genes under steady-state nutrient supply conditions. Acta Hortic 521:139–143; 2000

    CAS  Google Scholar 

  • Zupan, J.R.; Citovsky, V.; Zambryski, P. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci U S A 93:2392–2397; 1996

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Yuhong Li, Christine Ehret, and Joe Kamalay for critical reading of the manuscript. Special thanks to Simon Weller, Ray Collier, James (Mitch) Elmore, Beth Fuchs, and Manjula Govindarajulu for contributing pictures for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Taylor.

Additional information

Editor: Christian Walter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veena, V., Taylor, C.G. Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell.Dev.Biol.-Plant 43, 383–403 (2007). https://doi.org/10.1007/s11627-007-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9096-8

Keywords

Navigation