Skip to main content

Advertisement

Log in

High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To study the mechanisms regulating endochondral skeletal development, we examined the characteristics of long-term, high density micromass cultures of embryonic chicken limb bud mesenchymal cells. By culture Day 3, these cells underwent distinct chondrogenesis, evidenced by cellular condensation to form large nodules exhibiting cartilage-like morphology and extracellular matrix. By Day 14, extensive cellular hypertrophy was seen in the core of the nodules, accompanied by increased alkaline phosphatase activity, and the limitation of cellular proliferation to the periphery of the nodules and to internodular areas. By Day 14, matrix calcification was detected by alizarin red staining, and calcium incorporation increased as a function of culture time up to 2 to 3 wk and then decreased. X-ray probe elemental analysis detected the presence of hydroxyapatite. Analogous to growth cartilage developing in vivo, these cultures also exhibited time-dependent apoptosis, on the basis of DNA fragmentation detected in situ by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), ultrastructural nuclear morphology, and the appearance of internucleosomal DNA degradation. These findings showed that cellular differentiation, maturation, hypertrophy, calcification, and apoptosis occurred sequentially in the embryonic limb mesenchyme micromass cultures and indicate their utility as a convenient in vitro model to investigate the regulatory mechanisms of endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahrens, P. B.; Solursh, M.; Reiters, R. Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60:69–82; 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Alini, M.; Carey, D.; Hirata, S., et al. Cellular and matrix changes before and at the time of calcification in the growth plate studied in vitro: arrest of Type X collagen synthesis and net loss of collagen when calcification is initiated. J. Bone Miner. Res. 9:1077–1087; 1994.

    PubMed  CAS  Google Scholar 

  3. Alini, M.; Kofsky, Y.; Wu, W., et al. In serum-free culture thyroid hormones can induce full expression of chondrocyte hypertrophy leading to matrix calcification. J. Bone Miner. Res. 11:105–113; 1996.

    PubMed  CAS  Google Scholar 

  4. Anderson, H. C. Molecular biology of matrix vesicles. Clin. Orthop. Relat. Res. 314:266–280; 1995.

    PubMed  Google Scholar 

  5. Ballock, R.; Reddi, A. H. Thyroxine is the serum factor that regulates morphogenesis of columnar cartilage from isolated chondrocytes in chemically defined medium. J. Cell Biol. 126:1311–1318; 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Ballock, R. T.; Reddy, A. H. Morphogenesis of columnar cartilage from isolated chondrocytes in chemically-defined media is thyroxine dependent. Trans. Orthop. Res. Soc. 19:124; 1994.

    Google Scholar 

  7. Benya, P. D.; Schaffer, J. D. Dedifferentiation chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Boskey, A. L.; Stiner, D.; Doty, S. B., et al. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification. J. Bone Miner. Res. 16:11–36; 1991.

    Google Scholar 

  9. Farnum, C. E.; Wilsman, N. J. Histochemical evidence of DNA fragmentation characteristic of apoptosis in hypertrophic chondrocytes. Trans. Orthop. Res. Soc. 20:77; 1995.

    Google Scholar 

  10. Flechtenmacher, J.; Aydelotte, M. B.; Hauselmann, H. J., et al. Growth plate chondrocytes but not other chondrocytes form single cell-columns on a modified alginate gel system. Trans. Orthop. Res. Soc. 19:416; 1994.

    Google Scholar 

  11. Galotto, M.; Campanile, G.; Robino, G., et al. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chicken embryo. J. Bone Miner. Res. 9:1239–1249; 1994.

    PubMed  CAS  Google Scholar 

  12. Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501; 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Gerstenfeld, L. C.; Shapiro, F. D. Expression of bone-specific genes by hypertrophic chrondrocytes: implication of the complex functions of the hypertrophic chrondrocyte during endochondral bone development. J. Cell. Biochem. 62:1–9; 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Gibson, G. J.; Kohler, W. J.; Schaffler, M. B. Chondrocyte apoptosis in endochondral ossification of chick sterna. Dev. Dyn. 203:466–476; 1995.

    Google Scholar 

  15. Groessner-Schreiber, B.; Tuan, R. S. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J. Cell Sci. 101:209–217; 1992.

    PubMed  CAS  Google Scholar 

  16. Groessner-Schreiber, B.; Kreitzer, D.; Tuan, R. S. Bone cell response to hydroxyapatite-coated titanium surfaces in vitro. Semin. Arthroplasty; 2:260–267; 1991.

    Google Scholar 

  17. Hatori, M.; Klatte, K. J.; Teixeira, C. C., et al. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes. J. Bone Miner. Res. 10:1960–1968; 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Hunziker, E. B. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc. Res. Tech. 28:505–519; 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Hunziker, E. B.; Ludi, A.; Herrmann, W. Preservation of cartilage matrix proteoglycans using cationic dyes chemically related to ruthenium hexamine trichloride. J. Histochem. Cytochem. 40:909–917; 1992

    PubMed  CAS  Google Scholar 

  20. Jacenko, O.; Tuan, R. S. Calcium deficiency induces expression of cartilage-like phenotype in chicken embryo calvaria. Dev. Biol. 115:215–232; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Kato, Y.; Iwamoto, M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J. Biol. Chem. 265:5903–5909; 1990.

    PubMed  CAS  Google Scholar 

  22. Kiernan, J. A. Histological & histochemical methods. 2nd ed. New York: Pergamon Press; 1990.

    Google Scholar 

  23. Lev, R.; Spicer, S. Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem. 12:309; 1964.

    PubMed  CAS  Google Scholar 

  24. Linsenmayer, T. F.; Hendrix, M. J. C. Monoclonal antibodies to connective tissues macromolecules: type II collagen. Biochem. Biophys. Res. Commun. 92:440–446; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Loredo, G. A.; Koolpe, M.; Benton, H. P. Influence of alginate polysaccharide composition and culture conditions on chondrocytes in three-dimensional culture. Tissue Engineer. 2:115–125; 1996.

    Article  CAS  Google Scholar 

  26. Mello, M. A.; Tuan, R. S. Growth cartilage maturation in micromass cultures. Mol. Biol. Cell Suppl. 6:392a; 1995.

  27. Mello, M. A.; Tuan, R. S. Programmed cell death in micromass cultures of growth cartilage derived from embryonic limb mesenchyme. Mol. Biol. Cell. Suppl. 7:581a; 1996.

    Google Scholar 

  28. Oberlender, S.; Tuan, R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120:177–197; 1990.

    Google Scholar 

  29. Pechak, D. G.; Ilujawa, M. J.; Caplan, A. L. Morphology of bone development and bone remodeling in embryonic chick limbs. Bone 7:459–472; 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Ray, S.; Ponnathpur, V.; Huang, Y., et al. 1-β-d-Arabinofuranosylcytosine-, mitoxantrone, and paclitaxel-induced apoptosis in HL-60 cells: improved method for detection of internucleosomal DNA fragmentation. Cancer Chemotherap. Pharmacol. 34:356–371; 1994.

    Google Scholar 

  31. Reginato, A. M.; Tuan, R. S.; Ono, T., et al. Effects of calcium deficiency on chondrocyte hypertrophy and type X collagen expression in chick embryonic sternum. Dev. Dyn. 189:284–295; 1993.

    Google Scholar 

  32. Roach, H. I.; Erenpreisa, J. The phenotypic switch from chrondrocytes to bone-forming cells involves asymmetric cell division and apoptosis. Connect. Tissue Res. 35:85–91; 1996.

    PubMed  CAS  Google Scholar 

  33. Roach, I. New aspects of endochrondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. J. Bone Miner. Res. 12:795–805; 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Roach, I.; Erenpreisa, J.; Aigner, T. Osteogenic differentiation of hypertrophic chondrocytes involve asymmetric cell divisions and apoptosis. J. Cell Biol. 131:483–494; 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Roark, E. F.; Greer, K. Transforming growth factor-β and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro. Dev. Dyn. 200:103–116; 1994.

    PubMed  CAS  Google Scholar 

  36. San Antonio, J. D.; Tuan, R. S. Chondrogenesis of limb mesenchyme in vitro: stimulation by cations. Dev. Biol. 115:313–324; 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Tilly, J. L.; Hsueh, A. J. W. Microscale autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J. Cell. Physiol. 154:519–526; 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Wong, M.; Tuan, R. S. Nuserum, a synthetic serum replacement, supports chondrogenesis of embryonic chick limb bud mesenchymal cells in micromass cultures. In vitro Cell. Dev. Biol. Animal 29:917–922; 1993.

    Google Scholar 

  39. Zenmyo, M.; Komiya, S.; Kawabata, R., et al. Morphological and biochemical evidence for apoptosis in the terminal hypertrophic chondrocytes of the growth plate. J. Pathol. 180:430–433; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky S. Tuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mello, M.A., Tuan, R.S. High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development. In Vitro Cell.Dev.Biol.-Animal 35, 262–269 (1999). https://doi.org/10.1007/s11626-999-0070-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0070-0

Key words

Navigation