Skip to main content
Log in

The time-pattern of rises and falls in proliferation fades with senescence of mortal lines and is perpetuated in immortal rat hepatoma fao cell line

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Immortal cells perpetuate the rises and falls of proliferation that are progressively damped in mortal long-term cultured cells. For immortal rat hepatoma Fao cells, similar waves of proliferation occurred about every 3–4 wk. Under the same conditions, embryonic human fibroblasts and transformed but not immortalized embryonic fibroblasts display similarly recurring proliferation waves that progressively decrease in amplitude until senescence of the lines. In addition, strains of diploid normal human skin fibroblasts cultured under different culture conditions display a similar time-pattern of proliferation. Although the amplitude and baseline of these fluctuations are characteristic for each cell line, a common point was marked slow down in proliferation after every sequence of about 25 population doublings for all cells. Renewed proliferation waves of Fao cells allow about 22–23 additional population doublings each. Normal embryonic fibroblasts culture and its transformed counterpart accumulate about 30 and 60 population doublings, respectively, before senescence. Normal fibroblast strains accumulate about 25 population doublings over their entire life spans. This halt in proliferation after every stretch of about 25 population doublings may correspond to a structural or functional stop following attrition of telomeric DNA. This putative stop may be bypassed once in transformed embryonic cells and repetitively in immortal cells. In support of this hypothesis, we observed rapid telomere shortening, in two steps, during divisions of mortal embryonic cells, and maintenance of long telomeres in immortal Fao cells, which may indicate episodic repair of telomeres. Alternatively, such maintenance of long telomeres may reflect survival and successive clonal growth of rare cells with long telomeres. We suggest that the balance between telomere attribution and repair processes regulates the waves of proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allsopp, R. C.; Vaziri, H.; Patterson, C., et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89:10114–10118; 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Bell, E.; Marek, L. F.; Levinstone, D. S., et al. Loss of division potential in vitro: aging or differentiation? Science 202:1158–1163; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Benoît, C.; Chambon, P. In vivo requirements of the SV40 early promoter region. Nature 290:304–309; 1981.

    Article  Google Scholar 

  4. Chikappa, G.; Borner, G.; Burlington, H., et al. Periodic oscillation of blood leukocytes, platelets, and reticulocytes, in a patient with chronic myelocytic leukemia. Blood 47:1023–1030; 1976.

    Google Scholar 

  5. Counter, C. M.; Avilion, A. A.; LeFeuvre, C. E., et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921–1929; 1992.

    PubMed  CAS  Google Scholar 

  6. Counter, C. M.; Hirte, H. W.; Bacchetti, S., et al. Telomerase activity in human ovarian carcinoma. Proc. Natl. Acad. Sci. USA 91:2900–2904; 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Cristofalo, V. J.; Sharf, B. B. Cellular senescence and DNA synthesis. Exp. Cell Res. 76:419–427; 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Deschatrette, J.; Weiss, M. C. Characterization of differentiated and dedifferentiated clones of a rat hepatoma. Biochimie 56:1603–1611; 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Foulds, L. Mammary tumours in hybrid mice: growth and progression of spontaneous tumors. Br. J. Cancer 3:345–375; 1949.

    PubMed  CAS  Google Scholar 

  10. Gatti, R. A.; Robinson, W. A.; Deinard, A. S., et al. Cyclic leukocytosis in chronic myelogenous leukemia: new perspectives on pathogenesis and therapy. Blood 41:771–782; 1973.

    PubMed  CAS  Google Scholar 

  11. Harley, C. B.; Futcher, A. B.; Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Harley, C. B.; Vaziri, H.; Counter, C., et al. The telomere hypothesis of cellular aging. Exp. Gerontol. 4:375–382; 1992.

    Article  Google Scholar 

  13. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37:611–635; 1964.

    Google Scholar 

  14. Holt, S. E.; Wright, W. E.; Shay, J. W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 6:2932–2939; 1996.

    Google Scholar 

  15. Juckett, D. A. Cellular aging (the Hayflick limit) and species longevity: a unification model based on clonal succession. Mech. Ageing Dev. 38:49–71; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Karatza, C.; Stein, W. D.; Shall, S. Kinetics of in vitro ageing of mouse embryo fibroblasts. J. Cell Sci. 65:163–175; 1984.

    PubMed  CAS  Google Scholar 

  17. Kennedy, B. J. Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood 35:751–760; 1970.

    PubMed  CAS  Google Scholar 

  18. Kim, N. W.; Piatyszek, M. A.; Prowse, K. R., et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015; 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Levy, M. Z.; Allsopp, R. C.; Futcher, A. B., et al. Telomere end-replication problem and cell aging. J. Mol. Biol. 225:951–960; 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Maigné, J.; Ng, K. H.; Meunier-Rotival, M., et al. Correlation between reversion of a dedifferentiated rat hepatoma line and the recovery of tumorigenicity. Cancer Res. 48:3258–3264; 1988.

    PubMed  Google Scholar 

  21. Martin, G. M.; Sprague, C. A.; Epstein, C. J. Repliative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab. Invest. 23:86–92; 1970.

    PubMed  CAS  Google Scholar 

  22. McEachern, M. J.; Blackburn, E. H. Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376:403–409; 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Miles, C. P. Prolonged culture of diploid human cells. Cancer Res. 24:1070–1081; 1964.

    PubMed  CAS  Google Scholar 

  24. Moore, J. V.; Rowley, R.; Hopkins, H. A., et al. Cyclophosphamide as an adjuvant to X-rays in treatment of a radioresistant solid tumor of the rat, hepatoma H-4-II-E. Int. J. Radiat. Oncol. Biol. Phys. 5:1471–1474; 1979.

    PubMed  CAS  Google Scholar 

  25. Pitot, H. C.; Peraino, C.; Morse, P. A., et al. Hepatoma in tissue culture compared with adapting liver in vivo. Natl. Cancer Inst. Monog. 13:229–242; 1964.

    CAS  Google Scholar 

  26. Prowse, K. R.; Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl. Acad. Sci. USA 92:4818–4822; 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Reuber, M. D. A transplantable bile-secreting hepatocellular carcinoma in the rat. J. Natl. Cancer Inst. 26:891–897; 1961.

    PubMed  CAS  Google Scholar 

  28. Schächter, F.; Boucher, N.; Lesueur-Ginot, L., et al. Sénescence cellulaire et survie des lymphocytes T. Cellular senescence and survival of T lymphocytes. Comptes Rendus Acad. Sci. Paris 318:56572; 1995.

    Google Scholar 

  29. Shay, J. W.; Brasiskyte, D.; Ouellette, M., et al. Analysis of telomerase and telomeres. Methods Mol. Genet. 5:263–280; 1994.

    CAS  Google Scholar 

  30. Smith, J. R.; Hayflick, L. Variation in the lifespan of clones derived from human diploid cell strains. J. Cell Biol. 62:48–53; 1974.

    Article  PubMed  CAS  Google Scholar 

  31. Speer, J. F.; Petrosky, V. E.; Retsky, M. W., et al. A stochastic numerical model of breast cancer growth that simulates clinical data. Cancer Res. 44:4124–4130; 1984.

    PubMed  CAS  Google Scholar 

  32. Squartini, F. Strain differences in growth of mammary tumors. J. Natl. Cancer Inst. 26:813–828; 1961.

    Google Scholar 

  33. Tommerup, H.; Dousmanis, A.; de Lange, T. Unusual chromatin in human telomeres. Mol. Cell. Biol. 9:5777–5785; 1994.

    Google Scholar 

  34. Wolfrom, C.; Raynaud, N.; Maigné, J., et al. Periodic fluctuations in proliferation of SV-40 transformed human skin fibroblast lines with prolonged lifespan. Cell Biol. Toxicol. 10:247–254; 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Zhong, Z.; Shiue, L.; Kaplan, S., et al. A mammalian factor that binds telomere TTAGGG repeats in vitro. Mol. Cell. Biol. 12:4834–4843; 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Equal contributors to these studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maigné, J., Deschatrette, J., Sarrazin, S. et al. The time-pattern of rises and falls in proliferation fades with senescence of mortal lines and is perpetuated in immortal rat hepatoma fao cell line. In Vitro Cell.Dev.Biol.-Animal 34, 163–169 (1998). https://doi.org/10.1007/s11626-998-0100-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0100-3

Key words

Navigation