Skip to main content
Log in

Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover, and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22–28% (P<0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F (PGF) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37° C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bains, W. Applications of space-industry technologies to the life sciences. Tibtech 13:167–172; 1995.

    Google Scholar 

  2. Chromiak, J. A.; Vandenburgh, H. H. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation. Am. J. Physiol. 262:(6 Pt.1)C1471-C1477; 1992.

    PubMed  CAS  Google Scholar 

  3. Edgerton, V. R.; Roy, R. R. Response of skeletal muscle to space flight. In: Churchill, S., ed. Fundamentals of space life sciences. Krieger Pub. Co., Malabar, FL, pp. 105–120, 1997.

    Google Scholar 

  4. Farghali, H.; Kamenikova, L.; Hynie, S. The concept of application of immobilized and perfused mammalian cells (a bioreactor model) in biomedical research. Physiol. Res. 43:117–120; 1994.

    PubMed  CAS  Google Scholar 

  5. Knazek, R. A.; Gullino, P. M.; Kohler, P. O., et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178:65–67; 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Koh, G. Y.; Soonpaa, M. H.; Klug, M. G., et al. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J. Clin. Invest. 96:2034–2042; 1995.

    PubMed  CAS  Google Scholar 

  7. Kulesh, D. A.; Anderson, L. H.; Wilson, B., et al. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant. J. Cell. Biochem. 55:530–544; 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Labarca, C.; Paigen, K. A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Langer, R.; Vacanti, J. P. Tissue engineering. Science 260:920–926; 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Langer, R.; Vacanti, J. P. Artificial organs. Sci. Am. 273:130–133; 1995.

    PubMed  CAS  Google Scholar 

  11. Lowry, O. H.; Gilligan, D. R.; Katersky, E. The determination of collagen and elastin in tissues with results obtained in various normal tissues from different species. J. Biol. Chem. 139:795–804; 1941.

    CAS  Google Scholar 

  12. Nusgens, B.; Merrill, C.; Lapiere, C., et al. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Collagen Res. 4:351–364; 1984.

    CAS  Google Scholar 

  13. Perrone, C. E.; Fenwick-Smith, D.; Vandenburgh, H. H. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J. Biol. Chem. 270:2099–2106; 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Rando, T. A.; Blau, H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125:1275–1287; 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Redmond, E. M.; Cahill, P. A.; Sitzmann, J. V. Perfused transcapillary smooth muscle and endothelial cell co-culture—a novel in vitro model. In Vitro Cell. Dev. Biol. 31A:601–609; 1995.

    Google Scholar 

  16. Rodemann, H. P.; Goldberg, A. L. Arachidonic acid, prostaglandin E2 and F2 influence rates of protein turnover in skeletal and cardiac muscle. J. Biol. Chem. 257:1632–1638; 1982.

    PubMed  CAS  Google Scholar 

  17. Saltzman, W. M.; Parkhurst, M. R.; Parsons-Wingerter, P., et al. Three-dimensional cell cultures mimic tissues. Ann. NY Acad. Sci. 665:259–273; 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Sanderson, R. D.; Fitch, J. M.; Linsenmayer, T. R., et al. Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J. Cell Biol. 102:740–747; 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Shansky, J.; Del Tatto, M.; Chromiak, J., et al. A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cell. Dev. Biol. 33A:659–661; 1997.

    Google Scholar 

  20. Smith, S. M.; Krauhs, J. M.; Leach, C. S. Regulation of body fluid volume and electrolyte concentrations in spaceflight. Adv. Space. Biol. Med. 6:123–165; 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Symons, J. D.; Theodossy, S. J.; Longhurst, J. C., et al. Intramuscular accumulation of prostaglandins during static contraction of the cat triceps surae. J. Appl. Physiol. 71:1837–1842; 1991.

    PubMed  CAS  Google Scholar 

  22. Van Der Meulen, J. H.; Kuipers, J. H.; Drukker, J. Relationship between exercise-induced muscle damage and enzyme release in rats. J. Appl. Physiol. 71:999–1004; 1991.

    PubMed  Google Scholar 

  23. Vandenburgh, H. H.; Chromiak, J.; Shansky, J., et al. Initial International Space Station (ISS) definition studies for examining the effects of long term space travel on tissue cultured mammalian skeletal myofibers. ASGSB (Amer. Soc. Grav. Space Biol.) Bull. 10:29; 1996. (Abstract).

    Google Scholar 

  24. Vandenburgh, H. H.; Chromiak, J.; Shansky, J., et al. Space flight induces atrophy of tissue cultured skeletal myofibers. ASGSB Bull. 9:62; 1995. (Abstract).

    Google Scholar 

  25. Vandenburgh, H. H.; Chromiak, J. A.; Shansky, J., et al. Effects of space travel on cell metabolism and protein turnover of skeletal muscle cells. Am. Soc. Cell Biol.-Special Session-:H59, 1996 (Abstract).

  26. Vandenburgh, H. H.; Del Tatto, M.; Shansky, J., et al. Tissue engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7:2195–2200; 1996.

    PubMed  CAS  Google Scholar 

  27. Vandenburgh, H. H.; Hatfaludy, S.; Shansky, J. Skeletal muscle growth is stimulated by intermittent stretch/relaxation in tissue culture. Am. J. Physiol. 256:(3 Pt. 1)C674-C682; 1989.

    PubMed  CAS  Google Scholar 

  28. Vandenburgh, H. H.; Hatfaludy, S.; Sohar, I., et al. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am. J. Physiol. 259:(2 Pt. 1)C232-C240; 1990.

    PubMed  CAS  Google Scholar 

  29. Vandenburgh, H. H.; Karlisch, P.; Farr, L. Maintenance of highly contractile skeletal myotubes in collagen gels. In Vitro 24:166–174; 1988.

    CAS  Google Scholar 

  30. Vandenburgh, H. H.; Karlisch, P.; Shansky, J., et al. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am. J. Physiol. 260:(3 Pt. 1)C475-C484; 1991.

    PubMed  CAS  Google Scholar 

  31. Vandenburgh, H. H.; Kaufman, S. Protein degradation in embryonic skeletal muscle. Effect of medium, cell type, inhibitors, and passive stretch. J. Biol. Chem. 255:5826–5833; 1980.

    PubMed  CAS  Google Scholar 

  32. Vandenburgh, H. H.; Shansky, J.; Del Tatto, M., et al. Methods for the organogenesis of skeletal muscle in tissue culture. In: Morgan, J.; Yarmush, M., ed. Methods in molecular medicine: tissue engineering. Tottowa, NJ: Humana Press; 1988: In press.

    Google Scholar 

  33. Vandenburgh, H. H.; Shansky, J.; Solerssi, R., et al. Mechanical stimulation of skeletal muscle increases prostaglandin F production, cyclooxygenase activity, and cell growth by a pertussis toxin sensitive mechanism. J. Cell. Physiol. 163:285–294; 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Vandenburgh, H. H.; Swasdison, S.; Karlisch, P. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5:2860–2867; 1991.

    PubMed  CAS  Google Scholar 

  35. Wang, T.; Wu, J. H. D. A continuous perfusion bioreactor for long-term bone marrow culture. Ann. NY Acad. Sci. 665:274–284; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chromiak, J.A., Shansky, J., Perrone, C. et al. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids. In Vitro Cell.Dev.Biol.-Animal 34, 694–703 (1998). https://doi.org/10.1007/s11626-998-0065-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0065-2

Key words

Navigation