Skip to main content

Advertisement

Log in

Compartmentalized coculture of porcine arterial endothelial and smooth muscle cells on a microporous membrane

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Endothelial and smooth muscle cells were harvested from porcine pulmonary arteries and grown to two passages from primary culture in serum-containing medium. Thereafter, the cells were plated on the opposite sides of a microporous poly-(ethylene terephthalate) membrane and cultivated in a chemically defined, serum-free medium. The membrane with pores of 1 µm diameter allowed the passage of molecules and the extension of cell processes, while maintaining separate homogeneous cell populations. Pores of 3 µm diameter permitted the crossing of smooth muscle cells through the membrane. The coating of the polymer with constituents of the extracellular matrix optimized cell adhesion. Morphological analysis of the model showed typical cobblestone pattern and ultrastructure of endothelial cells, which lost rapidly the expression of von Willebrand factor but kept that of angiotensin-converting enzyme. Smooth muscle cells were spindle shaped and specific α-actin was revealed by immunochemistry and quantitated by enzyme-linked immunosorbent assay (ELISA). Their ultrastructure featured an intermediate contractile-synthetic phenotype. Permeability studies to different molecules showed a marked reduction of the albumin clearance. Finally, in coculture in the presence of endothelial cells, the smooth muscle cells proliferation was increased, whereas it was not the case in autologous cocultures. In conclusion, such a coculture model may help to a better understanding of the interactions between endothelial and smooth muscle cells that may be important in the pathogenesis of vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albelda, S. M.; Sampson, P. M.; Haselton, F. R., et al. Permeability characteristics of cultured endothelial cell monolayers. J. Appl. Physiol. 64:308–322; 1988.

    PubMed  CAS  Google Scholar 

  • Buul-Wortelboer, M. F.; Brinkman, H. J. M.; Dingemans, K. P., et al. Reconstitution of the vascular wall in vitro: a novel model to study interactions between endothelial and smooth muscle cells. Exp. Cell Res. 162:151–158; 1986.

    Article  PubMed  Google Scholar 

  • Casnocha, S. A.; Eskin, S. G.; Hall, E. R., et al. Permeability of human endothelial monolayers: effect of vasoactive agonist and cAMP. J. Appl. Physiol. 67(5):1997–2005; 1989.

    PubMed  CAS  Google Scholar 

  • Casnocha, S. A.; McIntire, L. V.; Eskin, S. G., et al. Measurement of endothel ial monolayer permeability and expression of endothelial cell products. Abstract, American Institute of Chemical Engineers, Annual Meeting. 173g; 1987.

  • Castellot, J. J., Jr.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J. Cell Biol. 90:372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Chamley, J. H.; Campbell, G. R. Endothelial cell influences on vascular smooth muscle phenotype. Annu. Rev. Physiol. 48:295–306; 1986.

    Article  Google Scholar 

  • Chamley, J. H.; Gordon, R.; Campbell, G. R., et al. The smooth muscle cell in culture. Physiol. Rev. 59:1–51; 1979.

    Google Scholar 

  • Ching, S. F.; Hayes, L. W.; Slakey, L. L. Angiotensin-converting enzyme in cultured endothelial cells: synthesis, degradation and transfer to culture medium. Atherosclerosis 3:581–588; 1983.

    CAS  Google Scholar 

  • Cooper, J. A.; Del Vecchio, P. J.; Minnear, F. L., et al. Measurement of albumin permeability across endothelial monolayers in vitro. J. Appl. Physiol 62:1076–1083; 1987.

    PubMed  CAS  Google Scholar 

  • Davies, P. F.; Truskey, G. A.; Warren, H. B., et al. Metabolic cooperation between vascular endothelial cells and smooth muscle cells in coculture: changes in low density lipoprotein metabolism. J. Cell Biol. 101:871–879; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Downie, G. H.; Ryan, U. S.; Hayes, B. A., et al. Interleukin-2 directly increases albumin permeability of bovine and human vascular endothelium in vitro. Am. J. Respir. Cell Mol. Biol. 7:58–65; 1992.

    PubMed  CAS  Google Scholar 

  • Fass, D.; Knutson, G. J.; Katzmann, J. Monoclonal antibodies to porcine factor VIII coagulation and their use in the isolation of active coagulation protein. Blood 59:594–600; 1982.

    PubMed  CAS  Google Scholar 

  • Fillinger, M. F.; O’Connor, S. E.; Wagner, R. J., et al. The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vasc. Surg. 17:1058–1068; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gajdusek, C.; Di Corleto, P. E.; Ross, R., et al. An endothelial cell derived growth factor. J. Cell Biol. 85:467–472; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ganz, P.; Davies, P. F.; Leopold, J. A., et al. Short and long term interaction of endothelium and vascular smooth muscle in coculture: effects on cyclic GMP production. Proc. Natl. Acad. Sci. USA 83:3552–3556; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J. G.; Siflinger-Birnboim, A.; Bizios, R., et al. Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol. 128:96–104; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Garg, U. C.; Hassid, A. Nitric oxide-generating vasodilators and 8-bromocyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest. 83(5):1774–1777; 1989.

    PubMed  CAS  Google Scholar 

  • Graham, D. J.; Alexander, J. J.; Miguel, R. Aortic endothelial and smooth muscle cell co-culture: an in vitro model of the arterial wall. J. Invest. Surg. 4:487–494; 1991.

    PubMed  CAS  Google Scholar 

  • Halleux, C.; Schneider, Y.-J. Iron absorption by intestinal epithelial cells: 1. CaCo2 cells cultivated in serum-free medium, on polyethylene terephtalate microporous membranes, as an in vitro model. In Vitro Cell. Dev. Biol. 27A:293–302; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, L. W.; Goguen, C. A.; Ching, S. F., et al. Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82:1147–1153; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, K. A.; Rubanyi, G. M.; Paul, R. J., et al. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248:C550–556; 1985.

    PubMed  CAS  Google Scholar 

  • Jaffe, E. A. Endothelial cells. Ann. NY Acad. Sci. 401:163–170; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A. Construction of an artificial blood vessel wall cultured endothelial and smooth muscle cells. Proc. Natl. Acad. Sci. USA 76:1882–1886; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Kapuscinski, J.; Skoczylas, B. Simple and rapid fluorimetric method for DNA microassay. Anal. Biochem. 83:252–257; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Larson, D. M.; Sheridan, J. D. Intercellular junctions and transfer of small molecules in primary vascular endothelial cultures. J. Cell Biol. 92:183–191; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Merrilees, M. J.; Lesley, S. Culture of rat and pig aortic endothelial cells. Atherosclerosis 38:19–26; 1981.

    Article  CAS  Google Scholar 

  • Navab, M. G.; Hama, S. Y.; Van Lenten, B. J., et al. A new antiinflammatory compound, leumedin, inhibits modification of low density lipoprotein and the resulting monocyte transmigration into the subendothelial space of cocultures of human aortic wall cells. J. Clin. Invest. 91:1225–1230; 1993.

    PubMed  CAS  Google Scholar 

  • Navab, M. G.; Hough, G. P.; Stevenson, L. W., et al. Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. J. Clin. Invest. 82:1853–1863; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, D. C.; Fass, D. N. Failure to detect Von Willebrand Factor in cultured porcine endothelial cells. Circulation 62 (suppl. III) 169; 1980.

    Google Scholar 

  • Ryan, U. S.; Ryan, J. W. Vital and functional activities of endothelial cells: In: Nossell, H. L.; Vogel, H. J., eds. Pathobiology of the endothelial cell. New York: Academic Press; 1985:455–469.

    Google Scholar 

  • Saunders, K. B.; D’Amore, P. A. An in vitro model for cell-cell interactions. In Vitro Cell. Dev. Biol. 28A:521–528; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, Y.-J. Optimization of hybridoma cell growth and monoclonal antibody secretion in a chemically defined, serum- and protein-free culture medium. J. Immunol. Methods 116:65–77; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sergent-Engelen, T.; Halleux, C.; Ferain, E., et al. Improved cultivation of polarized animal cells on culture inserts with new transparent polyethylene terephtalate or polycarbonate microporous membranes. Biotechnol. Tech. 4:89–96; 1990.

    Article  CAS  Google Scholar 

  • Siflinger-Birnboim, A.; Del Vecchio, P. J.; Cooper, J. A., et al. Molecular sieving characteristics of the cultured endothelial monolayer. J. Cell. Physiol. 132:111–117; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stoll, L. L.; Spector, A. A. Lipid transfer between endothelial and smooth muscle cells in coculture. J. Cell. Physiol. 133:103–110; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Thomae, K. R.; Nakayama, D. K.; Billiar, T. R., et al. The effect of nitric oxide on fetal pulmonary artery smooth muscle growth. J. Surg. Res. 59(3):337–343; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte, P. M.; Rubanyi, G. M.; Miller, V. M., et al. Modulation of vascular smooth muscle contraction by endothelium. Annu. Rev. Physiol. 48:307–320; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C. B.; Stavenow, L.; Pessah-Rasmussen, H. Interactions between cultured bovine arterial endothelial and smooth muscle cells: further studies on the effects of injury and modification of the consequences of injury. Artery 20(3):163–179; 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinard, F., Sergent-Engelen, T., Trouet, A. et al. Compartmentalized coculture of porcine arterial endothelial and smooth muscle cells on a microporous membrane. In Vitro Cell.Dev.Biol.-Animal 33, 92–103 (1997). https://doi.org/10.1007/s11626-997-0029-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0029-y

Key words

Navigation