Skip to main content
Log in

Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27Kip1 expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Allon M, Litovsky S, Young CJ, Deierhoi MH, Goodman J, Hanaway M, Lockhart ME, Robbin ML (2013) Correlation of pre-existing vascular pathology with arteriovenous graft outcomes in hemodialysis patients. Am J Kidney Dis 62:1122–1129

    Article  PubMed  Google Scholar 

  • Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  CAS  PubMed  Google Scholar 

  • Buchkovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Castellot JJ Jr, Wong K, Herman B, Hoover RL, Albertini DF, Wright TC, Caleb BL, Karnovsky MJ (1985) Binding and internalization of heparin by vascular smooth muscle cells. J Cell Physiol 124:13–20

    Article  CAS  PubMed  Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    CAS  PubMed  Google Scholar 

  • Clowes AW, Clowes MM (1986) Kinetics of cellular proliferation after arterial injury. IV. Heparin inhibits rat smooth muscle mitogenesis and migration. Circ Res 58:839–845

    Article  CAS  PubMed  Google Scholar 

  • Connell-Crowley L, Harper JW, Goodrich DW (1997) Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 8:287–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilley RJ, McGeachie JK, Prendergast FJ (1987) A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis 63:99–107

    Article  CAS  PubMed  Google Scholar 

  • Egan CG, Wainwright CL, Wadsworth RM, Nixon GF (2005) PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation. Cardiovasc Res 67:308–316

    Article  CAS  PubMed  Google Scholar 

  • Fasciano S, Patel RC, Handy I, Patel CV (2005) Regulation of vascular smooth muscle proliferation by heparin: inhibition of cyclin-dependent kinase 2 activity by p27(kip1. J Biol Chem 280:15682–15689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritze LM, Reilly CF, Rosenberg RD (1985) An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol 100:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Gauvin R, Ahsan T, Larouche D, Levesque P, Dube J, Auger FA, Nerem RM, Germain L (2010) A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng Part A 16:1737–1747

    Article  CAS  PubMed  Google Scholar 

  • Haller K, Wu Y, Derow E, Schmitt I, Jeang KT, Grassmann R (2002) Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 22:3327–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedin UL, Daum G, Clowes AW (1997) Disruption of integrin alpha 5 beta 1 signaling does not impair PDGF-BB-mediated stimulation of the extracellular signal-regulated kinase pathway in smooth muscle cells. J Cell Physiol 172:109–116

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom TH, Chow SC, Elo I, Coffey ET, Orrenius S, Sistonen L, Eriksson JE (1998) Suppression of Fas/APO-1-mediated apoptosis by mitogen-activated kinase signaling. J Immunol 160:2626–2636

    CAS  PubMed  Google Scholar 

  • Hu Y, Mayr M, Metzler B, Erdel M, Davison F, Xu Q (2002) Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res 91:e13–e20

    Article  PubMed  Google Scholar 

  • Hurt-Camejo E, Rosengren B, Sartipy P, Elfsberg K, Camejo G, Svensson L (1999) CD44, a cell surface chondroitin sulfate proteoglycan, mediates binding of interferon-gamma and some of its biological effects on human vascular smooth muscle cells. J Biol Chem 274:18957–18964

    Article  CAS  PubMed  Google Scholar 

  • Ishii I, Suzuki T, Kaneko H, Uchida M, Suzuki Y, Higashi K, Yagi S, Ariyoshi N, Igarashi K, Kitada M (2012) Correlation between antizyme 1 and differentiation of vascular smooth muscle cells cultured in honeycomb-like type-I collagen matrix. Amino Acids 42:565–575

    Article  CAS  PubMed  Google Scholar 

  • Ishii I, Tomizawa A, Kawachi H, Suzuki T, Kotani A, Koshushi I, Itoh H, Morisaki N, Bujo H, Saito Y, Ohmori S, Kitada M (2001) Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis 158:377–384

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S (2015) Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One 10:e0136681

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaakkola O, Kallioniemi OP, Nikkari T (1988) Lipoprotein uptake in primary cell cultures of rabbit atherosclerotic lesions. A fluorescence microscopic and flow cytometric study. Atherosclerosis 69:257–268

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Fukumoto Y, Ishibashi K, Soeda S, Kubota S, Yuki R, Nakayama Y, Aoyama K, Yamaguchi N, Yamaguchi N (2014) Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage. J Biol Chem 289:5730–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Hwang HM, Pyo CW, Hahm DH, Choi SY (2010) E2F1-directed activation of Bcl-2 is correlated with lactoferrin-induced apoptosis in Jurkat leukemia T lymphocytes. Biometals 23:507–514

    Article  CAS  PubMed  Google Scholar 

  • Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18:753–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra DE, Simoncini T, Liao JK (2000) Inhibition of vascular smooth muscle cell proliferation by sodium salicylate mediated by upregulation of p21(Waf1) and p27(Kip1. Circulation 102:2124–2130

    Article  CAS  PubMed  Google Scholar 

  • Nakayama Y, Igarashi A, Kikuchi I, Obata Y, Fukumoto Y, Yamaguchi N (2009) Bleomycin-induced over-replication involves sustained inhibition of mitotic entry through the ATM/ATR pathway. Exp Cell Res 315:2515–2528

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  • Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep 2:734–745

    Article  CAS  Google Scholar 

  • Poon RY, Jiang W, Toyoshima H, Hunter T (1996) Cyclin-dependent kinases are inactivated by a combination of p21 and Thr-14/Tyr-15 phosphorylation after UV-induced DNA damage. J Biol Chem 271:13283–13291

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  • Roy-Chaudhury P, Kelly BS, Miller MA, Reaves A, Armstrong J, Nanayakkara N, Heffelfinger SC (2001) Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidney Int 59:2325–2334

    Article  CAS  PubMed  Google Scholar 

  • Schulein-Volk C, Wolf E, Zhu J, Xu W, Taranets L, Hellmann A, Janicke LA, Diefenbacher ME, Behrens A, Eilers M, Popov N (2014) Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep 9:1099–1109

    Article  PubMed  Google Scholar 

  • Stamatiou R, Paraskeva E, Gourgoulianis K, Molyvdas PA, Hatziefthimiou A (2012) Cytokines and growth factors promote airway smooth muscle cell proliferation. ISRN Inflamm 2012:731472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Ishii I, Kotani A, Masuda M, Hirata K, Ueda M, Ogata T, Sakai T, Ariyoshi N, Kitada M (2009) Growth inhibition and differentiation of cultured smooth muscle cells depend on cellular crossbridges across the tubular lumen of type I collagen matrix honeycombs. Microvasc Res 77:143–149

    Article  CAS  PubMed  Google Scholar 

  • Tanner FC, Boehm M, Akyurek LM, San H, Yang ZY, Tashiro J, Nabel GJ, Nabel EG (2000) Differential effects of the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and p16(Ink4) on vascular smooth muscle cell proliferation. Circulation 101:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Tanner FC, Yang ZY, Duckers E, Gordon D, Nabel GJ, Nabel EG (1998) Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ Res 82:396–403

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Ishii I, Hirata K, Yamamoto F, Tashiro K, Suzuki T, Nakayama Y, Ariyoshi N, Kitada M (2011) Degradation of filamin induces contraction of vascular smooth muscle cells in type-I collagen matrix honeycombs. Cell Physiol Biochem 27:669–680

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Suzuki S, Suzuki T, Ishii I (2016) p27(Kip1) and p21(Cip1)-independent proliferative inhibition of vascular smooth muscle cells cultured in type-I collagen matrix honeycombs. Microvasc Res 103:36–40

    Article  CAS  PubMed  Google Scholar 

  • Walker HA, Whitelock JM, Garl PJ, Nemenoff RA, Stenmark KR, Weiser-Evans MC (2003) Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling. Mol Biol Cell 14:1941–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb RC (2003) Smooth muscle contraction and relaxation. Adv Physiol Educ 27:201–206

    PubMed  Google Scholar 

  • Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Nishimura K, Saiki R, Okudaira H, Tome M, Higashi K, Nakamura M, Terui Y, Fujiwara K, Kashiwagi K, Igarashi K (2013) Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle. Int J Biochem Cell Biol 45:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Murthy V, Schultz K, Tatro JB, Fitzgerald KA, Beasley D (2006) Toll-like receptor 3 signaling evokes a proinflammatory and proliferative phenotype in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 291:H2334–H2343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed under a partnership of collaboration between Chiba University and Nissan Chemical Industries Ltd. The investigations using animals described in this report conformed to the guidelines of the Animal Investigation Committee of Chiba University (Chiba, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsuko Ishii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natori, T., Fujiyoshi, M., Uchida, M. et al. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum. In Vitro Cell.Dev.Biol.-Animal 53, 191–198 (2017). https://doi.org/10.1007/s11626-016-0098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0098-x

Keywords

Navigation