Skip to main content
Log in

Development of an Atlantic salmon heart endothelial cell line (ASHe) that responds to lysophosphatidic acid (LPA)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

As diseases and abnormalities of the heart can interfere with the aquaculture of Atlantic salmon, the heart was investigated as a source of cell lines that could be used to study the cellular basis of these conditions. An Atlantic salmon heart endothelial cell line, ASHe, was developed and characterized for growth properties, endothelial cell characteristics, and responsiveness to lysophosphatidic acid (LPA). AHSe cells stained negative for senescence associated ß-galactosidase and grew well in 10 and 20% FBS/L15 at high cell density, but not in L15 medium supplemented with calf serum. It displayed many endothelial cell-like characteristics including a cobblestone morphology, capillary-like structures formation on Matrigel, and expression of von Willebrand factor and endothelial cell-related tight junction proteins ZO-1, claudin 3, and claudin 5. ASHe cells responded to the cardiovascular modulator, LPA, in two contrasting ways. LPA at 5 and 25 μM inhibited the ability of ASHe cells to heal a wound but stimulated their proliferation, especially as evaluated by colony formation in low-density cultures. The enhancement of proliferation by LPA parallels what has been observed previously in mammalian endothelial cell cultures exposed to LPA, whereas the LPA slowing of ASHe cell migration contrasted with the LPA-enhanced migration of some mammalian cells. Therefore, this cell line is a potentially useful model for future comparative studies on piscine and mammalian cardiovascular cell biology and for studies on diseases of Atlantic salmon in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7

Similar content being viewed by others

References

  • Aamelfot M, Dale OB, Weli SC, Koppang EO, Falk K (2012) Expression of the infectious salmon anemia virus receptor on Atlantic salmon endothelial cells correlates with the cell tropism of the virus. J Virol 86(19):10571–10578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Latif A, Heron PM, Morris AJ, Smyth SS (2015) Lysophospholipids in coronary artery and chronic ischemic heart disease. Curr Opin Lipidol 26(5):432–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aird WC (2007) Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  CAS  PubMed  Google Scholar 

  • Alieva IB, Zemskov EA, Smurova KM, Kaverina IN, Verin AD (2013) The leading role of microtubules in endothelial barrier dysfunction: disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization. J Cell Biochem 114(10):2258–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumer Y, Scholz B, Ivanov S, Schlosshauer B (2011) Telomerase-based immortalization modifies the angiogenic/inflammatory responses of human coronary artery endothelial cells. Experimental Biology and Medicine 236(6):692–700

    Article  CAS  PubMed  Google Scholar 

  • Bloch SR, Vo NT, Walsh SK, Chen C, Lee LE, Hodson PV, Bols NC (2016) Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 52(4):395–409

  • Bols NC, Dayeh VR, Lee LE, Schirmer K (2005) Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology. Biochem Mol Biol of Fishes 6:43–84

  • Bouïs D, Hospers GA, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4(2):91–102

    Article  PubMed  Google Scholar 

  • Brindley DN, Pilquil C (2009) Lipid phosphate phosphatases and signaling. J Lipid Res 50(Supplement):S225–S230

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ramakrishnan DP, Ren B (2013) Regulation of angiogenesis by phospholipid lysophosphatidic acid. Front Biosci 18:852–861

    Article  CAS  Google Scholar 

  • Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci 95(6):2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10(5):319–332

    Article  CAS  PubMed  Google Scholar 

  • Corning. (2013). Corning® Matrigel® Matrix Frequently Asked Questions. Retrieved May 5, 2016, from https://www.corning.com/media/worldwide/cls/documents/CLS-DL-CC-026 DL.pdf

  • Craig LE, Spelman JP, Strandberg JD, Zink MC (1998) Endothelial cells from diverse tissues exhibit differences in growth and morphology. Microvasc Res 55(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, Koppang EO (2016) Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. J Fish Dis 39(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Dayeh VR, Bols NC, Tanneberger K, Schirmer K, Lee LE (2013) The use of fish-derived cell lines for investigation of environmental contaminants: an update following OECD's fish toxicity testing framework No. 171. Curr Protoc Toxicol 1–5

  • Finstad ØW, Falk K, Løvoll M, Evensen Ø, Rimstad E (2012) Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI). Vet Res 43(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima N, Ishii S, Tsujiuchi T, Kagawa N, Katoh K (2015) Comparative analyses of lysophosphatidic acid receptor-mediated signaling. Cell Mol Life Sci 72(12):2377–2394

  • Furie B, Furie BC (1988) The molecular basis of blood coagulation. Cell 53(4):505–518

    Article  CAS  PubMed  Google Scholar 

  • Ganassin RC, Bols NC (1992) Effect of purine supplementation on the growth of salmonid cell lines in different mammalian sera. Cytotechnology 8(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Ganassin RC, Tran QH, Rabgey TF, Bols NC (1994) Enhancement of proliferation in cultures of Chinook salmon embryo cells by interactions between inosine and bovine sera. J Cell Physiol 160(3):409–416

    Article  CAS  PubMed  Google Scholar 

  • Goldman BL, Amin KM, Kubo H, Singhal A, Wurzel J (2006) Human myocardial cell lines generated with SV40 temperature-sensitive mutant tsA58. In Vitro Cellular & Developmental Biology-Animal 42(10):324–331

    CAS  Google Scholar 

  • Grant DS, Tashiro KI, Segui-Real B, Yamada Y, Martin GR, Kleinman HK (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58(5):933–943

    Article  CAS  PubMed  Google Scholar 

  • Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrington WN, Godman GC (1980) A selective inhibitor of cell proliferation from normal serum. Proc Natl Acad Sci 77(1):423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haugland Ø, Mikalsen AB, Nilsen P, Lindmo K, Thu BJ, Eliassen TM, et al. (2011) Cardiomyopathy syndrome of Atlantic salmon (Salmo salar L.) is caused by a double-stranded RNA virus of the Totiviridae family. J Virol 85(11):5275–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  CAS  PubMed  Google Scholar 

  • Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98(2):367–381

    Article  CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ, Committee N (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757

    Article  PubMed  Google Scholar 

  • Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4):1589–1598

    Article  CAS  PubMed  Google Scholar 

  • Kuruvilla L, Kartha CC (2007) Immortalization and characterization of porcine ventricular endocardial endothelial cells. Endothelium 14(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Lannan CN, Winton JR, Fryer JL (1984) Fish cell lines: establishment and characterization of nine cell lines from salmonids. In vitro 20(9):671–676

    Article  CAS  PubMed  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PD (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7(4):544–548

    Article  CAS  Google Scholar 

  • Lee H, Goetzl EJ, An S (2000) Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Phys Cell Phys 278(3):C612–C618

    CAS  Google Scholar 

  • Lee SJ, Tsao KC, Cherng BW, Liao YH (2015) Lysophospholipid receptor signaling in zebrafish development. Translational Cancer Research 4(5):544–556

    CAS  Google Scholar 

  • Li YF, Li RS, Samuel SB, Cueto R, Li XY, Wang H, Yang XF (2016) Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Frontiers in bioscience (Landmark edition) 21(1):70–88

    Article  PubMed Central  Google Scholar 

  • Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells identification of a 5′ enhancer. Circ Res 77:638–643

    Article  CAS  PubMed  Google Scholar 

  • Lou DA, Hu F (1987) Specific antigen and organelle expression of a long-term rhesus endothelial cell line. In vitro cellular & developmental biology 23(2):75–85

    Article  CAS  Google Scholar 

  • Lu XF, He GQ, Yu HN, Ma Q, Shen SR, Das UN (2010) Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes. Journal of Zhejiang University Science B 11(12):923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque A, Granja AG, González L, Tafalla C (2014) Establishment and characterization of a rainbow trout heart endothelial cell line with susceptibility to viral hemorrhagic septicemia virus (VHSV). Fish & shellfish immunology 38(1):255–264

    Article  CAS  Google Scholar 

  • Maayah ZH, Abdelhamid G, El-Kadi AO (2015) Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol 31(4–5):241–259

    Article  CAS  PubMed  Google Scholar 

  • Maciag T, Hoover GA, Stemerman MB, Weinstein R (1981) Serial propagation of human endothelial cells in vitro. J Cell Biol 91(2):420–426

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Hancox JC, Levi AJ (1998) Cultured adult cardiac myocytes. Cardiovasc Res 39(2):280–300

    Article  CAS  PubMed  Google Scholar 

  • Mongkoldhumrongkul N, Yacoub MH, Chester AH (2016) Valve endothelial cells-not just any old endothelial cells. Curr Vasc Pharmacol 14(2):146–154

    Article  CAS  PubMed  Google Scholar 

  • Morin KT, Tranquillo RT (2013) In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res 319(16):2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olyslaegers DA, Desmarets LM, Dedeurwaerder A, Dewerchin HL, Nauwynck HJ (2013) Generation and characterization of feline arterial and venous endothelial cell lines for the study of the vascular endothelium. BMC Vet Res 9(1):170

    Article  PubMed  PubMed Central  Google Scholar 

  • Panetti TS, Chen H, Misenheimer TM, Getzler SB, Mosher DF (1997) Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J Lab Clin Med 129(2):208–216

    Article  CAS  PubMed  Google Scholar 

  • Panetti TS, Nowlen J, Mosher DF (2000) Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. Arterioscler Thromb Vasc Biol 20(4):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Kazlauskas A (2012) Primary human endothelial cells secrete agents that reduce responsiveness to lysophosphatidic acid (LPA). Biosci Rep 32(4):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips PG, Birnby LM, Narendran AMITHI (1995) Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Phys Lung Cell Mol Phys 268(5):L789–L800

    CAS  Google Scholar 

  • Poppe TT, Taksdal T (2000) Ventricular hypoplasia in farmed Atlantic salmon Salmo salar. Dis Aquat Org 42:35–40

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684

    Article  CAS  PubMed  Google Scholar 

  • Rahmanian M, Pertoft H, Kanda S, Christofferson R, Claesson-Welsh L, Heldin P (1997) Hyaluronan oligosaccharides induce tube formation of a brain endothelial cell linein vitro. Exp Cell Res 237(1):223–230

    Article  CAS  PubMed  Google Scholar 

  • Schick PK, Walker J, Profeta B, Denisova L, Bennett V (1997) Synthesis and secretion of von Willebrand factor and fibronectin in megakaryocytes at different phases of maturation. Arterioscler Thromb Vasc Biol 17(4):797–801

    Article  CAS  PubMed  Google Scholar 

  • Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, Aktories K (2001) Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch 442(5):675–687

    Article  CAS  PubMed  Google Scholar 

  • Sporn LA, Marder VJ, Wagner DD (1986) Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46(2):185–190

    Article  CAS  PubMed  Google Scholar 

  • Stoll LL, Spector AA (1984) Changes in serum influence the fatty acid composition of established cell lines. In vitro 20(9):732–738

    Article  CAS  PubMed  Google Scholar 

  • Takle H, Baeverfjord G, Helland S, Kjorsvik E, Andersen O (2006) Hyperthermia induced atrial natriuretic peptide expression and deviant heart development in Atlantic salmon Salmo salar embryos. Gen Comp Endocrinol 147(2):118–125

    Article  CAS  PubMed  Google Scholar 

  • Tokumura A, Iimori M, Nishioka Y, Kitahara M, Sakashita M, Tanaka S (1994) Lysophosphatidic acids induce proliferation of cultured vascular smooth muscle cells from rat aorta. Am J Phys Cell Phys 267(1):C204–C210

    CAS  Google Scholar 

  • Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, et al. (2015) ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J Cell Biol 208(6):821–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda S, Ohtsuru A, Yamashita S, Kanetake H, Kanda S (2002) Role of c-Fyn in FGF-2-mediated tube-like structure formation by murine brain capillary endothelial cells. Biochem Biophys Res Commun 290(4):1354–1360

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta D, Jones JC (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci 116(24):4977–4984

    Article  CAS  PubMed  Google Scholar 

  • Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, et al. (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158(2):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Citters RL, Watson NW (1968) Coronary disease in spawning steelhead trout Salmo gairdnerii. Science 159(3810):105–107

    Article  Google Scholar 

  • van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH (1989) Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59(1):45–54

    Article  PubMed  Google Scholar 

  • Vo NT, Bols NC (2016) Demonstration of primary cilia and acetylated α-tubulin in fish endothelial, epithelial and fibroblast cell lines. Fish Physiol Biochem 42(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Vo NT, Chen C, Lee LE, Lumsden JS, Dixon B, Bols NC (2015a) Development and characterization of an endothelial cell line from the bulbus arteriosus of walleye, Sander vitreus. Comp Biochem Physiol A Mol Integr Physiol 180:57–67

    Article  PubMed  Google Scholar 

  • Vo NT, Mikhaeil MS, Lee LE, Pham PH, Bols NC (2015b) Senescence-associated β-galactosidase staining in fish cell lines and primary cultures from several tissues and species, including rainbow trout coelomic fluid and milt. In Vitro Cellular & Developmental Biology -. Animal 51(4):361–371

    Google Scholar 

  • Wolf K, Mann JA (1980) Poikilotherm vertebrate cell lines and viruses: a current listing for fishes. In vitro 16(2):168–179

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Ganji SH, Noh JW, Kamanna VS (2004) Cell density-dependent expression of EDG family receptors and mesangial cell proliferation: role in lysophosphatidic acid-mediated cell growth. American Journal of Physiology-Renal Physiology 287(6):F1250–F1257

    Article  CAS  PubMed  Google Scholar 

  • Yosef N, Ubogu EE (2013) An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol 33(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Yousaf MN, Koppang EO, Skjødt K, Hordvik I, Zou J, Secombes C, Powell MD (2013) Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD). Vet Immunol Immunopathol 151(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Yuh IS (2011) Lysophosphatidic acid (LPA) stimulates mouse mammary epithelial cell growth. Cell Biol Int 35(9):875–881

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Pu WT (2016) Recounting cardiac cellular composition. Circ Res 118(3):368–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ontario Ministry of Natural Resources (OMNR) Normandale Fish Culture Station for providing the Atlantic salmon fish used in this work. This work was funded by a Natural Science and Engineering Research Council (NSERC) of Canada Collaborative Research and Development Grant and Elanco Animal Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels C. Bols.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, P.H., Vo, N.T.K., Tan, E.J.H. et al. Development of an Atlantic salmon heart endothelial cell line (ASHe) that responds to lysophosphatidic acid (LPA). In Vitro Cell.Dev.Biol.-Animal 53, 20–32 (2017). https://doi.org/10.1007/s11626-016-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0077-2

Keywords

Navigation