Skip to main content
Log in

Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

This is the first report on differentiation of mouse amniotic membrane mesenchymal stem cells (AM-MSCs) into male germ cells (GCs). AM-MSCs have the multipotent differentiation capacity and can be differentiated into various cell types. In the present study, AM-MSCs were induced for differentiation into GCs. AM-MSCs were isolated from mouse embryonic membrane by enzymatic digestion. AM-MSCs were characterized with osteogenic and adipogenic differentiation test and flow cytometric analysis of some CD-markers. AM-MSCs were induced to differentiate into GCs using a creative two-step method. Passage-3 AM-MSCs were firstly treated with 25 ng/ml bone morphogenetic protein 4 (BMP4) for 5 d and in continuing with 1 μM retinoic acid (RA) for 12 d (total treatment time was 17 d). At the end of the treatment period, real-time reverse transcription (RT)-PCR was performed to evaluate the expression of GC-specific markers—Itgb1, Dazl, Stra8, Piwil2, Mvh, Oct4, and c-Kit- in the cells. Moreover, flow cytometry and immunofluorescence staining were performed to evaluate the expression of Mvh and Dazl at protein level. Real-time RT-PCR showed that most of the tested markers were upregulated in the treated AM-MSCs. Furthermore, flow cytometric and immunofluorescence analyses both revealed that a considerable part of the treated cells expressed GC-specific markers. The percentage of positive cells for Mvh and Dazl was about 23 and 46%, respectively. Our results indicated that a number of AM-MSCs successfully differentiated into the GCs. Finally, it seems that AM-MSCs would be a potential source of adult pluripotent stem cells for in vitro generation of GCs and cell-based therapies for treatment of infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aflatoonian B, Moore H (2006) Germ cells from mouse and human embryonic stem cells. Reproduction 132:699–707

    Article  CAS  PubMed  Google Scholar 

  • Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312:596–600

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Koopman P (2007) Retinoic acid, meiosis and germ cell fate in mammals. Development 134:3401–3411

    Article  CAS  PubMed  Google Scholar 

  • Broughton BR, Lim R, Arumugam TV, Drummond GR, Wallace EM, Sobey CG (2012) Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Front Cell Neurosci 6:66

    PubMed  Google Scholar 

  • Chen W, Jia W, Wang K, Zhou Q, Leng Y, Duan T, Kang J (2012) Retinoic acid regulates germ cell differentiation in mouse embryonic stem cells through a Smad-dependent pathway. Biochem Biophys Res Commun 418:571–577

    Article  CAS  PubMed  Google Scholar 

  • da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  Google Scholar 

  • Dobreva MP, Pereira PN, Deprest J, Zwijsen A (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54:761–777

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Ther Position Statement Cytotherapy 8:315–317

    CAS  Google Scholar 

  • Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Dressel R, Gromoll J, Schmidtke J, Engel W, Nayernia K (2007) Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 63:69–76

    CAS  PubMed  Google Scholar 

  • Dyce PW, Liu J, Tayade C, Kidder GM, Betts DH, Li J (2011) In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PLoS One 6:e20339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eguizabal C, Shovlin TC, Durcova-Hills G, Surani A, McLaren A (2009) Generation of primordial germ cells from pluripotent stem cells. Differentiation 78:116–123

    Article  CAS  PubMed  Google Scholar 

  • Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146

    Article  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Batavani R (2015) Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes. Anat Sci Int 90:187–196

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Batavani R, Sedighi-Gilani M (2014a) Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia. 46: 24-35.

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Sedighi-Gilani M (2016) Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim 52:49–61

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Sedighi-Gilani M, Mokarizadeh A (2014b) Starvation is more efficient than the washing technique for purification of rat Sertoli cells. In Vitro Cell Dev Biol Anim. 50: 723-30.

  • Ghasemzadeh-Hasankolaei M, Sedighi-Gilani MA, Eslaminejad MB (2014c) Induction of ram bone marrow mesenchymal stem cells into germ cell lineage using transforming growth factor-beta superfamily growth factors. Reprod Domest Anim. 49: 588-98.

  • Haston KM, Tung JY, Reijo Pera RA (2009) Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One 4:e5654

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316:394–396

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS (2009a) Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online. 19: 99-105.

  • Hua J, Yu H, Dong W, Yang C, Gao Z, Lei A, Sun Y, Pan S, Wu Y, Dou Z (2009b) Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells. Tissue Cell. 41: 448-55.

  • Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109:747–754

    CAS  PubMed  Google Scholar 

  • Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  Google Scholar 

  • Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Invest 120:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    Article  CAS  PubMed  Google Scholar 

  • Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, Yuen C, Greilach S, Zhao HH, Chow M, Chow YC, Rao J, Barritt J, Bar-Chama N, Copperman A (2011) Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 26:1296–1306

    Article  PubMed  Google Scholar 

  • Izumi M, Pazin BJ, Minervini CF, Gerlach J, Ross MA, Stolz DB, Turner ME, Thompson RL, Miki T (2009) Quantitative comparison of stem cell marker-positive cells in fetal and term human amnion. J Reprod Immunol 81:39–43

    Article  CAS  PubMed  Google Scholar 

  • Kerr CL, Hill CM, Blumenthal PD, Gearhart JD (2008) Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod 23:589–599

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Lee KB, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 47:135–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshimizu U, Watanabe M, Nakatsuji N (1995) Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Dev Biol 168:683–685

    Article  CAS  PubMed  Google Scholar 

  • Lacham-Kaplan O (2004) In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128:147–152

    Article  PubMed  Google Scholar 

  • Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenmair A, Hatlapatka T, Kollwig G, Hennerbichler S, Gabriel C, Wolbank S, Redl H, Kasper C (2012) Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 1:1061–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76:130–144

    Article  CAS  PubMed  Google Scholar 

  • Marques-Mari AI, Lacham-Kaplan O, Medrano JV, Pellicer A, Simon C (2009) Differentiation of germ cells and gametes from stem cells. Hum Reprod Update 15:379–390

    Article  CAS  PubMed  Google Scholar 

  • Mazaheri Z, Movahedin M, Rahbarizadeh F, Amanpour S (2011) Different doses of bone morphogenetic protein 4 promote the expression of early germ cell-specific gene in bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 47:521–525

    Article  CAS  PubMed  Google Scholar 

  • Medrano JV, Marques-Mari AI, Aguilar CE, Riboldi M, Garrido N, Martinez-Romero A, O’Connor E, Gil-Salom M, Simon C (2010) Comparative analysis of the germ cell markers c-KIT, SSEA-1 and VASA in testicular biopsies from secretory and obstructive azoospermias. Mol Hum Reprod 16:811–817

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W (2006a) Derivation of male germ cells from bone marrow stem cells. Lab Invest. 86: 654-63.

  • Nayernia K, Li M, Jaroszynski L, Khusainov R, Wulf G, Schwandt I, Korabiowska M, Michelmann HW, Meinhardt A, Engel W (2004) Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum Mol Genet 13:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann IE, Elliott DJ, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W (2006b) In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell. 11: 125-32.

  • Newson AJ, Smajdor AC (2005) Artificial gametes: new paths to parenthood? J Med Ethics 31:184–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SB, Seo MS, Kim HS, Kang KS (2012) Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. PLoS One 7:e44693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce M, Gioia Klinger F, De Felici M (2002) Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mech Dev 112:15–24

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, Murthi P, Gargett C, Manuelpillai U (2011) Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 6:e26136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A (2013) Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther 4:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, Kobayashi M, Yokoyama Y (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78:208–214

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Avarbock MR, Brinster RL (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 96:5504–5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirazi R, Zarnani AH, Soleimani M, Abdolvahabi MA, Nayernia K, Ragerdi Kashani I (2012) BMP4 can generate primordial germ cells from bone-marrow-derived pluripotent stem cells. Cell Biol Int 36:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 100:11457–11462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West FD, Mumaw JL, Gallegos-Cardenas A, Young A, Stice SL (2011) Human haploid cells differentiated from meiotic competent clonal germ cell lines that originated from embryonic stem cells. Stem Cells Dev 20:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Falciatori I, Molyneux LA, Richardson TE, Chapman KM, Hamra FK (2009) Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol Reprod 81:77–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H (2009) In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS One 4:e5338

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A 98:7858–7862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young HE, Black AC Jr (2004) Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:75–102

    Article  PubMed  Google Scholar 

  • Yu Z, Ji P, Cao J, Zhu S, Li Y, Zheng L, Chen X, Feng L (2009) Dazl promotes germ cell differentiation from embryonic stem cells. J Mol Cell Biol 1:93–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Tang Q, Wu W, Yuan B, Lu C, Xia Y, Ding H, Hu L, Chen D, Sha J, Wang X (2014) Association between DAZL polymorphisms and susceptibility to male infertility: systematic review with meta-analysis and trial sequential analysis. Sci Rep 4:4642

    PubMed  Google Scholar 

  • Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT (2008) Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int 32:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ (2009) “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry A 75:4–13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the manager and staff of Tashkhis Baft Aragene Company (TBA) for their helpful technical support.

This study carried out at Pharmaceutical Sciences Research Center (PSRC) of Tehran University of Medical Sciences in collaboration with Infertility and Reproductive Health Research Center of the Health Research Institute of Babol University of Medical Sciences.

All experimental protocols were approved by the ethical committee of Tehran Medical University on Care and Use of Animals that were in accordance with the guidelines of National Institute of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghasemzadeh-Hasankolaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Zohreh Afsartala and Mohammad Amin Rezvanfar contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsartala, Z., Rezvanfar, M.A., Hodjat, M. et al. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell.Dev.Biol.-Animal 52, 1060–1071 (2016). https://doi.org/10.1007/s11626-016-0073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-016-0073-6

Keywords

Navigation