Skip to main content

Advertisement

Log in

Quantification of DNA in urinary porcine bladder matrix using the ACTB gene

In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) is a rich network of proteins and proteoglycans that has proved to be very useful in tissue regeneration. Porcine ECM has been proposed as a biological scaffold, and urinary bladder matrix (UBM) has demonstrated superior biological properties; however, its use in human treatment requires ensuring that it is DNA free. Several protocols have been used for decellularization and to demonstrate the absence of DNA, but until now, a porcine housekeeping gene for quantifying DNA by real-time quantitative PCR (qPCR) has been limiting. The aim of this study was to propose a protocol to quantify the DNA content of decellularized UBM by qPCR for the beta-actin gene (ACTB). A total of 20 porcine bladders were used, and each bladder was divided into three pieces: one as a control and the others decellularized with either SDS or Triton X-100 detergent. The presence of DNA was assessed by histology, spectrophotometry, conventional PCR, and qPCR for the ACTB. Histological analysis demonstrated the absence of nuclei using both protocols. Spectrophotometrical evaluation resulted in DNA concentrations of 1561.4 ± 357.1 and 1211.9 ± 635.2 ng of DNA/mg dry weight after the SDS and Triton X-100 protocols, respectively. DNA was not detected in any protocol by conventional PCR. In contrast, using qPCR, we found 3.9 ± 2.8 ng of DNA/mg dry weight in the Triton X-100 protocol. Therefore, the use of qPCR is a reliable method to quantify residual DNA content after decellularization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahn HH, Kim KS, Lee JH, Lee MS, Song IB, Cho MH, Shin YN, Kim MS, Khang G, Lee HB (2007) Porcine small intestinal submucosa sheets as a scaffold for human bone marrow stem cells. Int J Biol Macromol 41:590–596

    Article  CAS  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bellis C, Ashton KJ, Freney L, Blair B, Griffiths LR (2003) A molecular genetic approach for forensic animal species identification. Forensic Sci Int 134:99–108

    Article  CAS  PubMed  Google Scholar 

  • Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, Southgate J (2007) Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 12:519–526

    Article  CAS  PubMed  Google Scholar 

  • Brown BN, Barnes CA, Kasick RT, Michel R, Gilbert TW, Beer-Stolz D, Castner DG, Ratner BD, Badylak SF (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31:428–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callanan A, Davis NF, Walsh MT, Mcgloughlin TM (2012) Mechanical characterisation of unidirectional and cross-directional multilayered urinary bladder matrix (UBM) scaffolds. Med Eng Phys 34:1368–1374

    Article  PubMed  Google Scholar 

  • Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW (2012) Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods 18:866–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chun SY, Lim GJ, Kwon TG, Kwak EK, Kim BW, Atala A, Yoo JJ (2007) Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28:4251–4256

    Article  CAS  PubMed  Google Scholar 

  • Dequach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. Plos One 5:e13039

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhanasekaran S, Doherty TM, Kenneth J, Group TBTS (2010) Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods 354:34–39

    Article  CAS  PubMed  Google Scholar 

  • Du L, Wu X (2011) Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artif Organs 35:691–705

    Article  CAS  PubMed  Google Scholar 

  • Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF (2008) Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637

    Article  CAS  PubMed  Google Scholar 

  • Georgiou CD, Patsoukis N, Papapostolou I (2005) Assay for the quantification of small-sized fragmented genomic DNA. Anal Biochem 339:223–230

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TW (2012) Strategies for tissue and organ decellularization. J Cell Biochem 113:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res 152:135–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grover GN, Rao N, Christman KL (2014) Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology 25:014011

    Article  PubMed Central  PubMed  Google Scholar 

  • Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11(298–300):302

    Google Scholar 

  • Holden MJ, Haynes RJ, Rabb SA, Satija N, Yang K, Blasic JR Jr (2009) Factors affecting quantification of total DNA by UV spectroscopy and PicoGreen fluorescence. J Agric Food Chem 57:7221–7226

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA (1991) Mechanical properties of cytoskeletal polymers. Curr Opin Cell Biol 3:4–11

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Keane TJ, Londono R, Turner NJ, Badylak SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781

    Article  CAS  PubMed  Google Scholar 

  • Khang G, Kim MS, Min BH, Lee I, Rhee JM, Bang H (2006) Scaffolds for tissue engineering. Tissue Eng Regen Med 3:376–395

    Google Scholar 

  • Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Article  CAS  PubMed  Google Scholar 

  • Koba M, Szotek A, Konopa J (2007) Limitation of usage of Pico Green dye in quantitative assays of double-stranded DNA in the presence of intercalating compounds. Acta Biochim Pol 54:883–886

    CAS  PubMed  Google Scholar 

  • Kobiyama K, Jounai N, Aoshi T, Tozuka M, Takeshita F, Coban C, Ishii K (2013) Innate immune signaling by, and genetic adjuvants for DNA vaccination. Vaccine 1:278–292

    Article  CAS  Google Scholar 

  • Lee SJ, Lee IW, Lee YM, Lee HB, Khang G (2004) Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D, L-lactide-co-glycolide) for tissue-engineered bone. J Biomater Sci Polym Ed 15:1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Leong DT, Gupta A, Bai HF, Wan G, Yoong LF, Too HP, Chew FT, Hutmacher DW (2007) Absolute quantification of gene expression in biomaterials research using real-time PCR. Biomaterials 28:203–210

    Article  CAS  PubMed  Google Scholar 

  • Lillie RD, Fullmer HM (1976) Histopathologic technic and practical histochemistry. McGraw-Hill, New York

    Google Scholar 

  • Liu L, Deng L, Wang Y, Ge L, Chen Y, Liang Z (2012) Porcine urinary bladder matrix-polypropylene mesh: a novel scaffold material reduces immunorejection in rat pelvic surgery. Int Urogynecol J 23:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li D, Wang Y, Xu H, Ge L, Liang Z (2011) Evaluation of the biocompatibility and mechanical properties of xenogeneic (porcine) extracellular matrix (ECM) scaffold for pelvic reconstruction. Int Urogynecol J 22:221–227

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Hoshiba T, Kawazoe N, Chen G (2011a) Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 32:2489–2499

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Hoshiba T, Kawazoe N, Koda I, Song M, Chen G (2011b) Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 32:9658–9666

    Article  CAS  PubMed  Google Scholar 

  • Mirsadraee S, Wilcox HE, Korossis SA, Kearney JN, Watterson KG, Fisher J, Ingham E (2006) Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng 12:763–773

    Article  CAS  PubMed  Google Scholar 

  • Moroni F, Mirabella T (2014) Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 3:1–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naranjo TA, Noguera-Salvá R, Guerrero FF (2009) Extracellular matrix: morphology, function, and biotensegrity (part I). Rev Esp Patol 42:249–261

    Google Scholar 

  • Narayanan K, Leck KJ, Gao S, Wan AC (2009) Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering. Biomaterials 30:4309–4317

    Article  CAS  PubMed  Google Scholar 

  • Nygard AB, Jorgensen CB, Cirera S, Fredholm M (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  • Rosario DJ, Reilly GC, Ali Salah E, Glover M, Bullock AJ, Macneil S (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3:145–156

    Article  CAS  PubMed  Google Scholar 

  • Rose W, Wood JD, Simmons-Byrd A, Spievack AR (2009) Effect of a xenogeneic urinary bladder injectable bioscaffold on lameness in dogs with osteoarthritis of the coxofemoral joint (hip): a randomized, double blinded controlled trial. Int J Appl Res Vet Med 7:13–22

    CAS  Google Scholar 

  • Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M (2002) Antimicrobial activity associated with extracellular matrices. Tissue Eng 8:63–71

    Article  PubMed  Google Scholar 

  • Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FR, Badylak SF, Shakesheff KM, White LJ (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9:7865–7873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selim M, Bullock AJ, Blackwood KA, Chapple CR, Macneil S (2011) Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int 107:296–302

    Article  CAS  PubMed  Google Scholar 

  • Singelyn JM, Dequach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL (2009) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30:5409–5416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A (2014) Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 5:218

    Article  PubMed Central  PubMed  Google Scholar 

  • Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269

    Article  CAS  PubMed  Google Scholar 

  • Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26:7339–7349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank the Fapsa y Asociados S. A. de C. V. for the donation of the biological material used in this work. This study was supported by CONACYT (228617 and 228618 grants), PROFOCIE 2014, FAI-UASLP, RRP, MAM, and AAH PROFAPI-UAS grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Flores.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Benítez, E., Soto-Sáinz, E., Pozos-Guillen, A. et al. Quantification of DNA in urinary porcine bladder matrix using the ACTB gene. In Vitro Cell.Dev.Biol.-Animal 51, 1040–1046 (2015). https://doi.org/10.1007/s11626-015-9927-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9927-6

Keywords

Navigation