Skip to main content
Log in

NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells

In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The nuclear receptor corepressor (NCoR) regulates the activities of gene transcription. Mesenchymal stem cells (MSCs) derived from bone marrow are multipotent cells which can differentiate into osteoblasts and adipocytes. This study was conducted to investigate the effects of NCoR on adipogenic differentiation of MSCs isolated from the rats. The results suggested that rat MSCs could differentiate into adipocytes successfully after cultured in adipogenic medium. NCoR protein determined by Western blot showed a lower expression in MSC-derived adipocytes, indicating that NCoR was involved in adipocyte differentiation of rat MSCs. It further proved that small interfering RNA (siRNA)-mediated knockdown of NCoR could promote cell viability and differentiation and enhance messenger RNA (mRNA) expression of lipoprotein lipase (LPL) and protein expression of CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). However, over-expression of NCoR exerted its functions in contrary to NCoR knockdown. It indicated that NCoR could negatively regulate adipogenic differentiation of rat MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  • Ailhaud G (2006) Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol 329:570–577

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110:55–67

    Article  CAS  PubMed  Google Scholar 

  • Camp HS, Ren D, Leff T (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 8:442–447

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142:295–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    Article  CAS  PubMed  Google Scholar 

  • Christine YU, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN (2005) The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem 280:13600–13605

    Article  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14

    Article  PubMed  Google Scholar 

  • Gregoire FM (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med (Maywood) 226:997–1002

    CAS  Google Scholar 

  • Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14:1048–1057

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guidez F, Petrie K, Ford AM, Lu H, Bennett CA, MacGregor A, Hannemann J, Ito Y, Ghysdael J, Greaves M, Wiedemann LM, Zelent A (2000) Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood 96:2557–2561

    CAS  PubMed  Google Scholar 

  • Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK (2000) A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutive repressor and inhibits PPARgamma-mediated adipogenesis. J Biol Chem 275:5754–5759

    Article  CAS  PubMed  Google Scholar 

  • Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    Article  PubMed  Google Scholar 

  • Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763

    Article  CAS  PubMed  Google Scholar 

  • Jepsen K, Rosenfeld MG (2002) Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 115:689–698

    CAS  PubMed  Google Scholar 

  • Kim DH, Vanella L, Inoue K, Burgess A, Gotlinger K, Manthati VL, Koduru SR, Zeldin DC, Falck JR, Schwartzman ML, Abraham NG (2010) EET-Agonist Regulates Human mesenchymal stem cells-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARgamma. Stem Cells Dev 19:1863–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krogsdam AM, Nielsen CA, Neve S, Holst D, Helledie T, Thomsen B, Bendixen C, Mandrup S, Kristiansen K (2002) Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation. Biochem J 363:157–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SK, Kim JH, Lee YC, Cheong J, Lee JW (2000) Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor. J Biol Chem 275:12470–12474

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18:7176–7184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH (2005) Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118:1987–1993

    CAS  Google Scholar 

  • MacDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11

    Article  CAS  PubMed  Google Scholar 

  • Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382

    Article  CAS  PubMed  Google Scholar 

  • Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JM, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Puri N, Sodhi K, Haarstad M, Kim DH, Bohinc S, Foglio E, Favero G, Abraham NG (2012) Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes. J Cell Biochem 113:1926–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97:493–497

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  CAS  PubMed  Google Scholar 

  • Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    CAS  PubMed  Google Scholar 

  • Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z (2001) A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol 3:267–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smas CM, Sul HS (1993) Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73:725–734

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman BM, Flier JS (1996) Adipogenesis and obesity: rounding out the big picture. Cell 87:377–389

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz P, Hu E, Spiegelman B (1995) Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev 5:571–576

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 95:10860–10865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Hiebert SW (2001) TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene 20:3716–3725

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Yang XY, Zhang X, Huang J, Hou J, Li J, Xiong H, Mihalic K, Zhu H, Xiao W, Farrar WL (2004) Transcriptional inactivation of STAT3 by PPARgamma suppresses IL-6-responsive multiple myeloma cells. Immunity 20:205–218

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kim KA, Kim JH, Sul HS (2006) Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J Nutr 136:2953–2956

    CAS  PubMed  Google Scholar 

  • Zhang J, Kalkum M, Chait BT, Roeder RG (2002) The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 9:611–623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant from the National Natural Science Foundation of Shandong Province, China (No. 2013ZRE27251).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Ming-Zhi.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong-Wei, G., Lan, L., De-Guo, X. et al. NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells. In Vitro Cell.Dev.Biol.-Animal 51, 749–758 (2015). https://doi.org/10.1007/s11626-015-9886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9886-y

Keywords

Navigation