Skip to main content

Advertisement

Log in

Chondroprotective potential of Phyllanthus amarus Schum. & Thonn. in experimentally induced cartilage degradation in the explants culture model

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Phyllanthus amarus Schum. & Thonn. (P. amarus) has been reported to exhibit anti-inflammation and antiarthritis properties leading to our interest to examine its beneficial effect in osteoarthritis. Thus, this study aimed to explore the chondroprotective potential of P. amarus extract (PAE) and its major compounds, phyllanthin and hypophyllanthin, in a cartilage explant model. Various concentrations of P. amarus extract, phyllanthin and hypophyllanthin, were treated on porcine articular cartilage explants induced with 25 ng/ml of interleukin-1 beta (IL-1β). After 4 days of incubation, the culture medium was measured for the release of sulfate glycosaminoglycans (s-GAGs) and matrix metalloproteinase-2 (MMP-2) activity by DMMB binding assay and zymography, respectively. The explant tissues were analyzed for the remaining of uronic acid content by colorimetric assay and stained with safranin-O for investigation of proteoglycan content. Cell viability of this model was evaluated by lactate dehydrogenase (LDH) assay. Chondroprotective potential of PAE and the major components against IL-1β-induced cartilage explant degradation were revealed by the decreased s-GAGs level and MMP-2 activity in culture medium consistent with an increase in uronic acid and proteoglycan contents in the explants when compared to the IL-1β treatment. These results agreed with those of diacerein and sesamin which used as positive controls. In addition, better chondroprotective activities of P. amarus crude extracts than those of the purified components were disclosed in this study. Hence, this is a pioneering study presenting the chondroprotective potential of PAE which may augment its application for therapeutic use as an antiarthritic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Abramson SB, Attur M (2009) Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 11:227

    Article  PubMed Central  PubMed  Google Scholar 

  • Alam MR, Ji JR, Kim MS, Kim NS (2011) Biomarkers for identifying the early phases of osteoarthritis secondary to medial patellar luxation in dogs. J Vet Sci 12:273–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Amin ZA, Alshawsh MA, Kassim M, Ali HM, Abdulla MA (2013) Gene expression profiling reveals underlying molecular mechanism of hepatoprotective effect of Phyllanthus niruri on thioacetamide-induced hepatotoxicity in Sprague Dawley rats. BMC Complement Altern Med 13:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Bjarnason I, Hayllar J, MacPherson AJ, Russell AS (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104:1832–1847

    CAS  PubMed  Google Scholar 

  • Carvalho RS, Yen EHK, Suga DM (1995) Glycosaminoglycan synthesis in the rat articular disk in response to mechanical stress. Am J Orthod Dentofacial Orthop 107:401–410

    Article  CAS  PubMed  Google Scholar 

  • Cesaretti M, Luppi E, Maccari F, Volpi N (2003) A 96-well assay for uronic acid carbazole reaction. Carbohydr Polym 54:59–61

    Article  CAS  Google Scholar 

  • Chaiwongsa R, Ongchai S, Tangyuenyong S, Kongtawelert P, Panthong A, Reutrakul R (2012) Chondroprotective potential of bioactive compounds of Zingiber cassumunar Roxb. against cytokine-induced cartilage degradation in explant culture. J Med Plants Res 6:5204–5213

    CAS  Google Scholar 

  • Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC (2005) Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 32:811–816

    Article  CAS  PubMed  Google Scholar 

  • Chirdchupunseree H, Pramyothin P (2010) Protective activity of phyllanthin in ethanol-treated primary culture of rat hepatocytes. J Ethnopharmacol 128:172–176

    Article  CAS  PubMed  Google Scholar 

  • Chotjumlong P, Khongkhunthian S, Ongchai S, Reutrakul V, Krisanaprakornkit S (2010) Human β-defensin-3 up-regulates cyclooxygenase-2 expression and prostaglandin E2 synthesis in human gingival fibroblasts. J Periodontal Res 45:464–470

    CAS  PubMed  Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  CAS  PubMed  Google Scholar 

  • Del Carlo M Jr, Loeser RF (2008) Cell death in osteoarthritis. Curr Rheumatol Rep 10:37–42

    Article  PubMed  Google Scholar 

  • Engel LW, Straus SE (2002) Development of therapeutics: opportunities within complementary and alternative medicine. Nat Rev Drug Discov 1:229–237

    Article  CAS  PubMed  Google Scholar 

  • Fang SH, Rao YK, Tzeng YM (2008) Anti-oxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J Ethnopharmacol 116:333–340

    Article  CAS  PubMed  Google Scholar 

  • Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9:247–248

    Article  CAS  PubMed  Google Scholar 

  • Funk JL, Frye JB, Oyarzo JN, Timmermann BN (2009) Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. J Nat Prod 72:403–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galasso O, Familiari F, Gori MD, Gasparini G (2012) Recent findings on the role of gelatinases (matrix metalloproteinase-2 and −9) in osteoarthritis. Adv Orthop 2012:834208

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldring MB (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum 43:1916–1926

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashimoto M, Nakasa T, Hikata T, Asahara H (2008) Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev 28:464–481

    Article  CAS  PubMed  Google Scholar 

  • Hoppmann RA, Peden JG, Ober SK (1991) Central nervous system side effects of nonsteroidal anti-inflammatory drugs: aseptic meningitis, psychosis, and cognitive dysfunction. Arch Intern Med 151:1309–1313

    Article  CAS  PubMed  Google Scholar 

  • Huh JE, Baek YH, Kim YJ, Lee JD, Choi DY, Park DS (2009) Protective effects of butanol fraction from Betula platyphyla var. japonica on cartilage alterations in a rabbit collagenase-induced osteoarthritis. J Ethnopharmacol 123:515–521

    Article  PubMed  Google Scholar 

  • Jeng KC, Hou RC, Wang JC, Ping LI (2005) Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett 97:101–106

    Article  CAS  PubMed  Google Scholar 

  • Kandhare AD, Ghosh P, Ghule AE, Zambare GN, Bodhankar SL (2013) Protective effect of Phyllanthus amarus by modulation of endogenous biomarkers and DNA damage in acetic acid induced ulcerative colitis: role of phyllanthin and hypophyllanthin. Apollo Med 10:87–97

    Article  Google Scholar 

  • Karuna R, Reddy SS, Baskar R, Saralakumari D (2009) Antioxidant potential of aqueous extract of Phyllanthus amarus in rats. Indian J Pharmacol 41:64–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kassuya CAL, Leite DFP, Melo LV, Rehder VLG, Calixto JB (2005) Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med 71:721–726

    Article  CAS  PubMed  Google Scholar 

  • Kiemer AK, Hartung T, Huber C, Vollmar AM (2003) Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-κB pathway. J Hepatol 38:289–297

    Article  PubMed  Google Scholar 

  • Krithika R, Jyothilakshmi V, Verma RJ (2014) Phyllanthin inhibits CCl4-mediated oxidative stress and hepatic fibrosis by down-regulating TNF-α/NF-kappaB and pro-fibrotic factor TGF-beta1 mediated inflammatory signaling. Toxicol Ind Health. (in press). doi: 10.1177/0748233714532996

  • Kuptniratsaikul V, Thanakhumtorn S, Chinswangwatanakul P, Wattanamongkonsil L, Thamlikitkul V (2009) Efficacy and safety of Curcuma domestica extracts in patients with knee osteoarthritis. J Altern Complement Med 15:891–897

    Article  PubMed  Google Scholar 

  • Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1170

    Article  PubMed Central  PubMed  Google Scholar 

  • Lotz M, Hashimoto S, Kuhn K (1999) Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartil 7:389–391

    Article  CAS  Google Scholar 

  • Lu KH, Yang HW, Su CW, Lue KH, Yang SF, Hsieh YS (2013) Phyllanthus urinaria suppresses human osteosarcoma cell invasion and migration by transcriptionally inhibiting u-PA via ERK and Akt signaling pathways. Food Chem Toxicol 52:193–199

    Article  CAS  PubMed  Google Scholar 

  • Mali SM, Sinnathambi A, Kapase CU, Bodhankar SL, Mahadik KR (2011) Anti-arthritic activity of standardised extract of Phyllanthus amarus in Freund’s complete adjuvant induced arthritis. Biomed Aging Pathol 1:185–190

    Article  CAS  Google Scholar 

  • Martel-Pelletier J, Pelletier JP (2010) Effects of diacerein at the molecular level in the osteoarthritis disease process. Ther Adv Musculoskelet Dis 2:95–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller MB, Tuan RS (2011) Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM&R 3:S3–S11

    Article  Google Scholar 

  • Ong-Chai S, Chaiwongsa R, Viriyakhasem N, Pompimon W, Tangyuenyong S (2008) Effect of active compounds from Andrographis paniculata (nees) on protection of equine articular cartilage degradation in vitro. KKU Vet J 18:81–96

    Google Scholar 

  • Parhamifar L, Andersen H, Moghimi SM (2013) Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol Biol 948:13–22

    CAS  PubMed  Google Scholar 

  • Patel JR, Tripathi P, Sharma V, Chauhan NS, Dixit VK (2011) Phyllanthus amarus :Ethnomedicinal uses, phytochemistry and pharmacology :A review. J Ethnopharmacol 138:286–313

    Article  CAS  PubMed  Google Scholar 

  • Phitak T, Pothacharoen P, Settakorn J, Poompimol W, Caterson B, Kongtawelert P (2012) Chondroprotective and anti-inflammatory effects of sesamin. Phytochemistry 80:77–88

    Article  CAS  PubMed  Google Scholar 

  • Pradit W, Nganvongpanit K, Siengdee P, Buddhachat K, Osathanunkul M, Chomdej S (2012) In vitro effects of polysaccharide gel extracted from durian rinds (Durio Zibethinus L.) on the enzymatic activities of MMP-2, MMP-3 and MMP-9 in canine chondrocyte culture. IJBBB 2:151–154

    Article  Google Scholar 

  • Tang YQ, Jaganath I, Manikam R, Sekaran SD (2013) Phyllanthus suppresses prostate cancer cell, PC-3, proliferation and induces apoptosis through multiple signalling pathways (MAPKs, PI3K/Akt, NFB, and Hypoxia). Evid Based Complement Alternat Med 2013:13

    Google Scholar 

  • Tripathi AK, Verma RK, Gupta AK, Gupta MM, Khanuja SPS (2006) Quantitative determination of phyllanthin and hypophyllanthin in Phyllanthus species by high-performance thin layer chromatography. Phytochem Analysis 17:394–397

    Article  CAS  Google Scholar 

  • Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weis M, Heeschen C, Glassford AJ, Cooke JP (2002) Statins have biphasic effects on angiogenesis. Circulation 105:739–745

    Article  CAS  PubMed  Google Scholar 

  • Woolf AD (2012) Influential global alliance calls on governments and the World Health Organisation to prioritise musculoskeletal health following findings of Global Burden of Disease Study 2010. Truro, UK. http://www.cmcc.ca/document.doc?id=1459. Cited 10 Aug 2014

  • Yahayo W, Supabphol A, Supabphol R (2013) Suppression of human fibrosarcoma cell metastasis by Phyllanthus emblica extract in vitro. Asian Pac J Cancer Prev 14:6863–6867

    Article  PubMed  Google Scholar 

  • Zamli Z, Adams MA, Tarlton JF, Sharif M (2013) Increased chondrocyte apoptosis is associated with progression of osteoarthritis in spontaneous Guinea pig models of the disease. Int J Mol Sci 14:17729–17743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zrimšek P, Kos VK, Mrkun J, Kosec M (2007) Diagnostic value of MMP-2 and MMP-9 in synovial fluid for identifying osteoarthritis in the distal interphalangeal joint in horses. Acta Veterinaria Brno 76:87–95

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Research Council of Thailand (Government Budgeting via Chiang Mai University; 2015) and Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Thailand. We also thank to the National Research University Project under Thailand’s Office of the Higher Education Commission. The authors gratefully acknowledge the assistance of Assoc. Prof. Dr. Ampai Panthong in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriwan Ongchai.

Additional information

Editor: T. Okamoto

Waranee Pradit and Siriwadee Chomdej contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradit, W., Chomdej, S., Nganvongpanit, K. et al. Chondroprotective potential of Phyllanthus amarus Schum. & Thonn. in experimentally induced cartilage degradation in the explants culture model. In Vitro Cell.Dev.Biol.-Animal 51, 336–344 (2015). https://doi.org/10.1007/s11626-014-9846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9846-y

Keywords

Navigation